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I. Introduction 

The space-time approach to quantum electrodynamics, as has been developed 
by Feynman,I> seems to offer a very attractive and useful idea to this domain of 
physics. His ingenious method is indeed attractive, not only because of its 
'intuitive procedure which enables one to picture to oneself the complicated 
interactions of elementary particles, its ease and relativistic correctness with 
which one can calculate the necessary matrix elements or transition probabilities, 
but also because of its way of thinking which seems somewhat strange at first 
look and resists our minds that are accustomed to causal laws. According t(fthe 
new standpoint, one looks upon the world in its four-dimensional entirety. A 
phenomenon that wiII come into play in this theatre is now laid out beforehand 
in full detail from immemorial past to ultimate future and one investigates the 
whole of it at glance. The time itself loses sense as the indicator of the develop­
ment of phenomena; there are particles which flow down as well as up the 
stream of time; the- eventual creation and annihilation of pairs that may occur 
now and then, is no creation nor annihilation, but only a change of directions 
of moving particles, from past to future, or from future to past; a virtual pair, 
which, according to the ordinary view, is foredoomed to exist only for a limited 
interval of time, may also be regarded as a single particle that is circulating 
round a closed orbit in the four-dimensional theatre; a real particle is then a 
particle whose orbit is not closed but reaches to infinity ... 

In such a view, a state with prescribed number of particles incluliing real 
as well as virtual does not exactly correspond to a four-dimensional state in the 
ordinary sense, that is, a state represented by the wave function satisfying the 
time dependent Schroedinger equation. But the former is rather a part of the 
latter in which any number of viltual particles may be allowed t9 occur. To 
obtain an idea of the actual state we shall have to sum over all possibilities as 
to the number of virtual particles. 

The interpretation of the four-dimensional state in the present sense becomes 
also somewhat different from the conventional one as giving the transition pro!. 

*) New staying temporarily at Tokyo University. 
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bability or amplitude from a given state A to a final state F in the three­
dimensional space. We can rather ask for the relative probability that a four­
dimensional state A-I -F with prescribed real as well as virtual (intermediate) 
particles be realized in nature. This will be zero unless the arbitrary chosen 
A-I-F is not such as is an actually possible transition under the Schroedinger 
equation. 

The above-mentioned view of the entire space-time behavior of nature sub 
specie aet .. rnitatis, however, might not appeal to a reason which is liable to think 
in the language of differential equations and pursue the development of things 
along a certain parameter. In fact we find it hard to regard the world line of a 
particle as a mere status of that particle, but are unconciously following the 
motion of an imaginary mass point along the world line. Thus, in Feynman's 
theory where the ordinary time loses its role as the indicator of the development 
of the world, it would still be convenient to introduce some parameter with which 
the four-dimensional world is going to shape itself. How this is possible to a 
certain extent we shall see in what follows. 

2. Formal introduction of the proper time 

Let us consider a wave function obeying the ordinary Schroedinger equation 

i ~ if!(t,x) =H(z) ¢J(!, x). at (1) 

The scalar product (if!,~) of two wave functions if! and ~ at a given time carries 
the meaning of the probability amplitude for finding a state characterized by S~ 

when we know t-hat the system is in the state ~. This interpretation is based 
upon the mathematical fact that the length of the wave function vector is con­
stant in time according to (1). If we go over to the four-dimensional standpoint 
and regard the behavior of if! in both t and .;t for a finite interval of time as 
characterizing the state lJ! (t, x), we shall naturally have to define the norm of a 
wave function by 

(10+1' ('" ( 
(lJ!, lJ!) = Jeo J _<f(tx), if! (tx»dzdt= T J (if! (x) , if! (x) ) dx, (2) 

which is a multiple of the ordinary norm of the state if!. Thus we have only 
to alter the normalization of the wave function for the transition from S~ to lJ!, 
though this means an infinite factor when the time interval is extended indefini­
tely. The probability amplitude (if!,~) mentioned above is then in the new 
standpoint merely a probability amplitude density for a cross section of time 
from which the full amplitude is derived by integration with respect to t: 

(lJ!, f/J)= j(if!, ~)dt. (3) 

Eq. (3) allows the following interpretation. Suppose we take for lJ! and f/J. two 
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stationary states for a system, then (3) will be zero unless IJf and rp represents 
the same state. But if some pert'Jrbation is introduced in the system, the system 
will no longer remain in the original (three-dimensional) state 'lfi, but the space­
time behavior of rp will be expressed by decomposing it with respect to unper­
turbed eigenfunctions, 

(4) 

The probability that we find the system after an infinite lapse of time in the 
state k is given by 

lim lak(t) 12=lim I (cjJkl rp) 1,2. (5) 
1+0:> '-+(0 

If we displace the time scale and shift the initial point to - co, we obtain the 
probability for finding a state IJf k or cjJk (referred to unperturbed coordinates) 
irrespective of time when we know the system was in the state 'Po and the per­
turbation has been, say adiabatically, switched on, by 

(6) 

for we may suppose that alt) has reached its stationary value for any finite t. 
In this way the four~dimensional scalar product acquires a physical meaning. 

Now let us 'investigate the problem from a different point of view. The 
Schroedinger equation (1) implies, when regarded four-dimensionally, a sort of 
supplementary condition imposed on 1Jf: 

(iajat-H)IJf=O (7) 

since we no longer look upon t as a parameter along which IJf develops itself. 
Consequently a IJf which corresponds to the real world must be of the form 

(8) 

If we introduce here a redundant variable T and assume an equation of the type 

(9) 

and an accompanying eigenvalue problem 

(9') 

(8) becomes 

(10) 

The four-dimensional view has a static character 111 that a state is uenned once 
for all t and after that a condition is invoked in order that.it correspond to any 
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reality. But now that T' is introduced and (9) has regained the aspect of an 
ordinary Schroedinger equation, the new variable must play a similar role as 
that the ordinary time played in (1). As T' goes on, a wave packet localized 
over certain four-dimensional volume will move to and fro and change its shape 
gradually. Then we may think of T' as something like the proper time of the 
particle represented by the wave packet. If we directed a camera on to that 
particle with the shutter open for an infinitely long time, we should obtain a 
vague strip of world line as the locus of the particle, which would correspond to 
the real wave function lJ! real' Eq. (10) tells us just this situation in the mathe­
matical language. 

Next we shall consider the transition probability. If a perturbation term is 
inserted, (9) becomes 

(11) 

while the free particle wave functions to which we refer the initial and final 
state satisfy the equation 

Let us write ia/at-Ho === L, and perform the transformation 

lJ!=exp [-iLT'] lJ!1' H;.'=exp [iLT'] Hl exp [-iLT'], 

(11) then goes over into 

i ~ lJ!l= -H;.'lJ!I' at 

(12) 

(13) 

(14) 

Starting at T'=T'o from a free state lJ! A, the transition amplitude at T'=T' to a free 
state lJ! F will be expressed by 

(16) 

since H/ would in general bring a real particle into unreal one for which LIP: ~O. 
Eq. (15) admits a twofold interpretation: a) formally, P(AF) is given from (lJ!" 
lJ! (. )) by taking the zero-frequency component of IF ( .. ) : 

1 f'" P(AF)=- (IF" lJ!(.))d. j 
21r -ID 

(16) 

b) physically, it is the accumulated amplitude for the transition starting from the 
sttlte A and arriving at F after an infinite lapse of time: 

P(AF) = f:~Ip"" lJ!(.) )d.= S:~~IU(T" - 00) IA)dT'. 

(16) and (17) differ only by a normalization factor. 

(17) 
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Thus we see that the formal introduction of a redundant parameter and its 
identification with the proper time carries a bit of mathematical convenience as 
well as physical plausibility. In order to convince ourselves further on this point, 
we shall next recall Fock's theory and go ahead on his line. 

3. Theory of Fock and its extension 

Fock2} once introduced the concept of the proper time in the Dirac electron 
in parallel with the classical theory and proved its correspondence to the ordinary 
proper time. It will be briefly recapitulated below. The classical Lagrangian 
for an electron interacting with the electromagnetic field is given by 

and the equation of motion follows from the variational principle 

as=o, s= fLod!', 

together with the supplementary condition 

(18) 

(19) 

(20) 

Eliminating !' from (19) and (20) we get the ordinary action function S(Zp.) 
for the system. The Hamilton-Jacobi partial differential equation which follows 
from above is 

as + _1_ [(grad S + _t_ A)2 _~( as -e. fP)2] + m2c=O, 
a.. 2m c c at (21) 

with the condition 

(21') 

Nuw turning to quantum theory, the Dirac electron obeys the wave equation 

(rp.Dp.+x)¢,=O, Dp.=a/azp.-e/1ic·Ap.' 

Such a if' may be expressed as 

if'=(rp.Dp.-x) IF, 

where 7jJ' in turn shall obey the second order differential equation 

(22) 

(23) 

(24) 

Fock proposed to introduce a function F which satisfies instead Qf (24) an 
equation closely analogous to (21): 

. a n2 

t'4 a!' F 2mc AF, (20) 
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and express '!J! as a suitable integral of F over t : 

'!J!=Jfd" (26) 

the contour being taken in such a way that 

~ lJI"=S aF d,=Flc=O, (27) 
a, ca..-

which corresponds to the condition (21'). 
When we neglect temporarily the electromagnetic interaction, the eledron 

becomes free and (25) is solved by 

F(,) =exp (- lnt' A) F(O). (28) 
2mc 

Given an ,initial distribution of the wave packet over space-time, it will change 
with ..- by the relation (28). But only those stationary states with zero eigen­
value can ever correspond to a real world: 

(29) 

In. classical language, a preassigned pattern of streamlines representing the motion 
of an aggregat,e of electrons wili change according to the dynamical law (21). 
Only the stationary stream is the true state of the world where individual elec­
trons follow invariant paths. 

Now let us determine the behavior of the wave packet which starts from a 
delta function F(O)=t1(z) at ,=0. The answer is easily given by the Fourier 
representation 

i r (X~. X .) =--- -- exp - x.z+----- TZ 
4rr2 ,2 2, 2· • 

(,>0). (30) 

F(., z) is the probability amplitude for finding the particle at z when we know 
that· it was at the origin a time ,ago. According to the previous argument the 
real observed amplitude will be obtained when we sum F(..-, z) for all ..-> 0, 
which results in 

(31) 
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Here 1, ,d(l), and 4, bear the meaning as defined in Schwinger,3) Feynman,1) and 
Dyson4) : 

21 (x) =-l-f 1 ikp.Xp. dk 
(2n)4 ..f!+r p.. 

4(1)(%) =_l_Ja (..f! + x2) lkp.Xp. dk 
(2n) 3 p.. 

4,(x) = -2i.J(%) +4(1)(%) = _2 -Ja+ (..f!+ r) /kp.Xp. dkp.. 
(2n)3 

(32) 

Thus we see that we shall be able to arrive at 41'> the fundamental quantity' in 
positron theory. if we take F(r, x) for the (five-dimensional) commutation rela­
tion between quantized wave functions satisfying (25). The proper time 1" is 

. nothing but what has been a mere parameter in the integral representation of 
the 4-functions. The integration with respect to 1" followed above. not from - co 
to + co but only for positive 1". is a departure from the standpoint expounded 
before, and corresponds to the fact that four-dimensional outgoing waves divergent 
from a source into past and future are exclusively considered in Feynman's 
theory. 

Now the starting equation (25) seems somewhat artificial and impairing the 
simplicity of the original Dirac equation. In fact one would be tempted to 
introduce the proper time as a fifth coordinate in a linearized form. Thus one 
may put for instance 

rs ~ ¢=(rp._a_+ x) ¢, rs -.!... ¢t=(rp._a __ x) ¢t, 
aT a%p. aT a%p. 

which, by iteration, yields 

A solution of (24) can be written as 

¢=(rs -:T +Lf) rp, (0;-x2) rp=O, 

a L=rp.--+x, 
a.t'p. 

a Lt =rp. -.;---x, 0'=1, ...... 0, %~=1" •• 
'o'x", 

For the commutation relation we adopt the expression 

(33) 

(34) 

(35) 

(36) 
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where C means the path of integration for ks: + 00;_0_+ co. First, when 
integrated over t'=Xs from 0 to 00, (g6) gives 

SID 2; J if . [ 1 ] f(-r.,x)dt'=--,. e ",X"'b(ker2+r) nb(k,.)--.- tlker 
o (2n) .. ikD 

= -~J. ik~"'[~ b(k~+r) + 1 ] dk",= -~. d,(x), (37) 
(2n) 4 2 2i(k:+r) 2 

and (36) reduces to 

r. {¢,(t'), ¢'tf(O)} tlt'= -~Dd,(x), 
J~ 2 

(38) 

the term with a/a1: being put to zero on integration. The initial value of f for 
t'=0 is calculated in a similar way, and yields the result 

(~r5-D)fl· =~J(ir5 ck -r-o (2n)4 
(39) 

But the factor in the bracket becomes 

Lt. . 
irs (-k~-r)~ trs(1+s), s=r.D/( -k~-r)%, (40) 

s2=1, s= ±1. 

Thus, (39) is not of the form const. b(x) , as it should be. This is because we 
are selecting only those .waves which are outgoing from the source point. 
Neglecting s, or taking its average, we get the reasonable result 

(41) 

In this point the linearized form does not prove to be much preferable to the 
original Fock equation. Though it may be convenient when we try to make use 
of the interaction representation, we shall follow hereafter Fock's procedure 
which seents most natural after all. 

4. Problem or vacuum polarization 

Now we shall turn to the interpretation of the various terms of the S 
matrix. The starting point is that the probability amplitude for an electron 
going from x to z' in a time t' is assumed to be given by 

(lJI'*, ¢'(x, 1:»=(r", _a __ x) dei', x-x') == set', x-x'). (42) 
ax", 

If, for example, we consider the self-energy of the electron, we have to do with 
the process: an electron and a photon start simultaneously at x artd afterwards 
meet again at z', thereby giving rise to the matrix element 
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(43) 

Integrating over T we ,get the usual,:;;elf~ener.gy element. We could also intro­
duce another proper time for the photon at least formaliy, modifying D(x-x') 
to D(T, ,,:-x'). But then tp.e radiation field no mor4!! remains, real. 

The problem. of the vactium.polarizationis a more .lnteresting subject. Here 
we shall confine ourselves to the external polarization only. An electron, starting 
from x, suffers a scattering by the field at x' (time T), then comes back to the 
origin (time T + T') and there produces a pDlarization cUI;rent aJ~. This will be 
given by 

(44) 

Integration with respect to T and T' leads to the usual exppession. If we con­
sider the possibility that an electron can be scattered bY' ~he ·field over and over 
again before return, then we ate dealing with an electron moving under continuous 
influence of the field. Such an electron will be -described' by the wave function 
satisfying 

(45) 

Its contribution to the induced current is 

Summing over all stationary states (and adjusting the normalization factor)" we 
get the induced current expression 

cb;'=i:EA a/(1)1JI';rl'-(r~D~-x)1Jl' A, (47) 

Letting the external field 'vanish, (47) reduces simply to 

cb·~=iTr,.[r"(h.L-,,).-. _1_. Sa+(k2+.r) ikl'-XI'-dkl'-]' =.i- Tr [r",S,,(O)j. (48) 
. ax), (211')4 >:=0 2 

which may be regarded as zero by virtue ·of symmetry. If, however, (47) is 
expanded in powers of the .,co~pling.q:mstant,all·· expres:sioJ} of the form 

, 
a' =c .. A +r2·D .. 2 A + ..... . :tl'- t 1'-" .""1'-" (49) 

will be obtained. The first and second teJ"m are divergent, .correSponding to the 
self-energy of photon and the renormalization of the external charge -respectively. 
We shall show, however, that there is a different method of approach to deter­
mine the form of aJ~' 

Fock resorted to a kind· of the W.K.B. method to solve the proper time 
wave equation (2~), setting , 

i 
F_eTsf; (50) 
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where S is the classical action function satisfying (21). This method is applied 
to obtain the Riemann function R for the Dirac electron, which is expressed as 

R=fFd" (51) 

the contour encircling the origin .. =0 in the compl~x domain. F can be 
rigorously solved when the electron is free or at least the external field is con­
stant. In the former case, in particular, 

S m" 1 " = +-X"-- me- .. , 
2.. 2 

f m 1 
= - 8:r21ic T'2' 

(52) 

On the other hand, Schwinger's ~:i"-function has the integral representation 

1 Joo Or/. ° x2 Joo ;x2 ixf' d J(x)=-- e -t x2 +t4/Z du.=_x_ e~2r-x+-r~. 
8~2 _00 16~2 _00 .. 2 

(53) 

When -r is positive, we may take a contour integral going round the upper 
half plane at infinity and deviating slightly below the real axis near the origin; 
when _x2 is negative, we go round the lower half plane at infinity. Then the 
former contour shrinks .. to a circle around zero, giving just (43), and the latter 
integral vanishes. Thus 

where 

- 1 d(x)=-- R(x)r(-x2), 
2 

r(A)= {
I, 

0, 

(54) 

From this result we see that the function d<;) in the presence of the external 
field will be obtained if we choose in (42) a straight integration path from 0 to 
00 instead of the circle around zero. When there is a constant magnetic and 
electric field Hand E parallel to the 3 axis, F=exp(iS/1i.)! is given by 

S S 1 • eE [( ')" "( I)"J h eE .. = o--me""+-- z-z -_co t- - ct --' 
2 ~ 2~ 

+ eH [(X-X')2+ ()'-.rYJ ctg en" 
4e 2mc 

So=.1.. eE (3+Z') (t-/) + en (x')'-yx) , 
2 2e 

(5:5) 

I ~ en eE 10 !sin en.. sh eE .. , 
8,r!i.c 2~ 2me 2mc 2~ 
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.!o=exp [~q.H .. + _c_ a.E .. ], 
2mc 2mc 

and 

- ~ ilC;> (x, x') =J'F(x, z') d ... 
2 0 

(56) 

The polarization current· is then 

a;·(I.=i Tr[r(l.(rA_a- -1t- ~rAAA)ilC;>(x,x')J ' 
aXA ~c ,"-xl 

(57) 

where 
1 1 

A"=-THy, AY=2Hx, A.=O, A4=Ezi. (58) 

Let us consider the problem of the gauge invariance. When A(I. is replaced 
by A(I.+aX/ax(l.' S acquires an additional term (c/c)(X-X') so that ilC;> is 
multiplied by a factor exp [i(X(x) -X(x')/']. But the current (48) turns out to 
suffer no modification: 

(59) 

The gauge invariance is thus guaranteed. The charge conservation law also 
holds since 

(ro+1t- ;; Ar)S}':>=SC;>(-ro'+1t- ~ A'r)--,)(z-z'). (60) 

These relations are a consequence of the equation (25) for F and the initial 
condition: F(z.) =,)(z) at .. =0. 

On the other hand the usual perturbation formula (40) gives in general non­
gauge invariant, divergent results when evaluated numerically. In our expression 
(56) for the particular constant field, however, a;",. turns out to vanish if we 
regard expressions of the type (xl&-zl&') ilC;>(x, x') 1 .. _." to be zero. This may be 
approved because here appears only one singular functiott and not a product of 
two or more, so that it is a consistent condition compatible with other require­
ments. It is also shown in the appendix that no essential difficulties arise in 
case of an arbitrary constant field. The self-energy of the photon is. then zero 
at least in the order tT, for the first term in the expansion (40) vanishes ac­
cording to the above result. 

it: 

Appendix. Solution for an arbitrary constant 
external field.5) 

We take the constant external field F;.I& = - F(l.A' and the vector potential for 

(AI) 
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where XO). are arbitrary constants corresponding to an initial condition in the 
subsequent calculation. The classical equation of motion is then 

d' e • 
-xfL=---FfLA X }. 
de mc 

or 
d' e • 

-.:t:=---.Fx, 
de mc 

F=(FfLA ). (A2) 

The Hamilton-Jacobi equation is, on the other hand, given by 

as 1 [( as e ( )F)2 0 oJ 0 --+-- ---+_._-- X}.-XOA AfL +1JrC- = . 
ae 2m a.:t:fL 2c 

(A3) 

Instead of solving (A:3) directly, we shall first handle the equation of motion 
(A2) which can easily be integrated because If' is a constant matrix. Thus, 

and further 

[ e ] . , 
x= exp - mc Fr- Xo == 8xo, 

(X-Xo)=[(1-8(e»! ~ FJOOOT 

000 =[ :: ! (1-8(T»] (x-xo), 

The conjugate momenta PfL and the Hamiltonian H=(px)-L become 

p=nzx-'(e/c) A=mx+ (e/2c) F(x-xo) 

(A4) 

(A5) 

=[ eF 8/(1-8) + eF J (x-xo) = eF (1+ 8)/(1-8). (x-xo) 
c ~ ~ 

=_e_ :J!"'cth (_e_ Fr). (x-xo) , 
2c 2mc 

H I. 1 ( e ,,)2 1 • 1 ' • =-mc-+-- p+ ---,4 =-_.- mc-+- fflX-
2 2m c 2 2 

1 • 1 • e2 (F8 F8 ) =-mc-+--mc-·-- --x-xo,--x-xo 
22 m 2c2 1-8 1-8 

1 • e2 ( -P8 ) 
=2- mc-+ 2m x-xo, (1-8)2 X-xo , 

using the relation for the transposed: 

F -F. 

(A6) 

(A7) 

(AS) 
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The action function S, which satisfies as-pox-Hih, is now obtained by putting 

S=-~mCT+~ (00-000 , G(oo-ooo», 
2 4c 

G=11' cth (_e _ 11'1'). 
21"1tC 

The remaining function! is determined by the equation 

2m· df +(D2S+~ O'p.vFp.~)f=O 
tiT 2c 

From (A9), 

so that 

f=exp[---.:.~ T1' {In sh (_e_ FT)+~ (CIF)T}]Ia. 
2 2mc 2mc 

(A9) 

(AlO) 

(All) 

In these expressions, functions of the matrix 11' bear symbolical meaning. When 
it happens that det 11!'1 =0 a d consequently no inverse can be defined directly, 
we should go back to the beginning for the correct interpretation. 

Now that the functions F=exp US/Ii)! and Ap. are both even in the coor­
dinates x-x', we see that the argument proposed in Section 4 for the discussion 
of the induced current holds also in this general case. 
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