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It is explicitly shown that integral expressions of the dual-resonance propagators defined 
on two-dimensional (one-" space" and one~" time") media exhibit a detailed symmetry when 
the "space" axis and the "time" axis are interchanged in some sense with each other. For 
example, the dual-resopance propagator in momentum space proves to get a parametric 
integral representation of the form quite similar to the representation of the position-space 
propagator through this interchange. In particular, this reciprocal symmetry is shown to 
have an interesting connection with the recently known critical dimension .of space for 
which .no ghosts appear. 

It is likely that the symmetry has its origin in a graph-theoretical duality inherent in 
two-dimensional planar media, but its prototype may also be found in the well-known 
properties of the conventional Feynman propagators. 

§ 1. Introduction 

As is widely known, it is possible to represent both the conventional Feynman 

propagator in positi\)n space and that in momentum space by similar parametric 

integrals. These expressions exhibit a reciprocity which exists between them. 

' In fact we can write 

:dF(x-x') =; r· dae-iam,•;a s .fD 4x(t)exp{- (i/2) r dt(8x(t)/8t/} 

=- (i/4TC3) ro daa- 3 exp{- (i/2) [mo3a+ (x-x')3/a]} (1·1)*> 

for the former (x(a) =x',x(O) =x), while the momentum-space propagator or 

the Fourier transform of (1·1) takes the form 

(P3 -m03)-1=- {i/2) 100 da ex'p{- (i/2) (mo3 -P3)a} (1·2) 

up to a constant factor. Let us tentatively introduce dual positions y and y' by 

-ap=y-y'. (1·3) 

Then- (1· 2) becomes 

(p3 -m03)-1lc1.s) =- (i/2) Soooda exp{- (i/2) [mo3a- (y-y'Y/a]}. (1· 4a) 

*> We -use .the metric goo= -gll= ... =1. Then (x, p) =~ gPP:rf'p•, whereas we write p 2 f9r 

(p, p). 
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2028 M. Minami 

It is evident t?at, in (1·1) and (1· 4a), the exponential factor m one integrand 
takes a shape similar to that of the other. 

Choice is, however, not unique and if we instead introduce y and y' by 

P=y-y' (1· 3') 
and change the integration parameter (proper time) a to /3 by 

{3=1/a, (1·5) 
then we have 

(P2 - m02)-1 / (l.a') =- (i/2) f" d{3{3-2 exp {- (i/2) [mo2/{3- (y-y'Y/{3]}. (1· 4b) 

· This time the factor {3- 2 appears as a factor symmet~ically corresponding to a~2 
in (1·1) [up to the present we have considered the space-time to be four-dimen­
sional]. 

The- symmetry which we have just described is ratner trivial but has a deep 
connection with the reciprocal symmetries which lie amon? the field theoretical 
quantities variously in position and momentum spaces. (Refer, e.g., to Ref. 1)) .*> 

In a series of papers2>-D> we have brought about propagators which the dual­
resonance models require. These new propagators just correspond to two-dimen­
sional generalizations of (1·1) or (1· 2). As an extension of the position-space 
propagator (1·1), we have defined (in Refs. 3) and 5)) 

.JF[x2(s), x1(s)] = f' dae-m,•a;2 J.fWx(s, t) exp{ -tD[x(s, t); D 0a]} 

= f"dae-m,•af2g.,[a]exp{-i-D[xh(s,t);D0a]}, (1·6) 

where D[x(s,t);D0a] is the Dirichlet integral of x(s,t) over the domain D 0a: 

D[x; Doa] = f dsdt [ (8x/8sY + (8x)8t)2] JD 0 a 

and xh (s, t) denotes the harmonic part of x (s, t). On the other hand, as a 
modification of (1· 2), we have deflned2>• 4> 

JF[Y2(s), Y1(s)] = f' dae-m,•al2 J fD8y(s, t)exp{tD[y(s, t); D 0a]} 

= f" dae-m,•af2gy [a] exp{tD[yh (s, t); D 0a]}, (1·7) 

where yh (s, t) is also the harmonic part of y (s, t). 
As D 0a, we call for 

(1·8) 

_ *> Especially it should be recalled that the transposition (1· 3) or (1· 31) is natural from the 
graph-theoretical point of view. 
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Reciprocal Symmetries of the Dual-Resonance Propagators 2029 

or 

C0a = { (s, t) I O<s<2l, O<t<a with (0, t) = (2l, t)}, (1·8') 

both of which reduce to the conventional Feynman path {t: O<t<a} when l~O. 
The vecto~ y (s, t) , or yh (s, t) which is made use of in (1· 7) is also the 

dual-position vector which can be more naturally defined in a two-dimensional 
medium (see Ref. 2) and also Ref. 6) ). 

Incidentally the factor exp (- !m02a) in (1· 6) or (1· 7) is a Wick-rotated 
counterpart of exp(-!im02a) in (1·1) or {1·2). Let us introduce here the 
inner radius r 0 associated with (1· 8) or (1· 8') by 

ro = exp ( -na/l). 

Then exp ( --:-!m02a) =r01mo'i2"', so that the intercept a0 is given by 

ao = -lmo2 /2n . 

(That is, if a 0= 1, then m 02 = -2n/l.) 

(1·9) 

The main object of the present paper is to investigate the possibility whether 
the simple symmetries which lie between the ex~ressions (1·1) and (1· 4a) or 
(1· 4b) can also be maintained in the case of the dual-resonance propagators. 
We deal with this problem in terms of a four-leg diagram (when D 0a=R0a) or 
a two-leg one (when D 0a=C0a). We will not, however, carry out the Fourier 
transformation of (1· 6), but we directly compare (1· 7) with (1· 6) in the same 
way as we compared (1· 4a) or (1· 4b) with (1·1). As a result it will be shown 
that the symmetry which can hold is deeply connected with the magic dimensions 
of space-time, that is, the maximal number of dimensions for which no ghosts 
appear. 

The present work has been inspired by a short note by Brink and Nielsen.7> 

-In the case in which we use the domain R 0a, the width l plays the role of the 
reciprocal variable f3 defined by (1· 5) (or l/ a corresponds to {3, while a/l to a). 
This has a relation with the Jacobi imaginary transformation and so is concerned 
with the idea of Brink and Nielsen. On the other hand, in the case of using 
the domain C0a, such a replacement of the t-axis and the s-axis is so stringent 
that we can only expect the symmetry to hold under more restricted conditions. 

In the next two sections, we present two auxiliaries; in § 2 we, shall solve 
a boundary-value problem for yh (s, t) to discuss the symmetry of the Dirichlet 
integral factors in (1· 6) and (1· 7) , and then in § 3 we consider the symmetry 
of the weight g, [a] or g11 [a]. Finally § 4 contains the main proposition that is 
concerned with the reciprocal symmetries of the full expressions of propagators. 

§ 2. Dirichlet's problem for the dual-position 

To obtain the explicit form of the exponential of D [yh(s, t); R0a] in (1· 7), 
we shall first solve a boundary-value problem for the dual-position yh (s, t) when · 
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2030 M. Minami 

Fig. 1. 

the case is as depicted m Fig. 1. Let yh (s, t) be harmonic in· R0a and satisfy 
the boundary condition 

y(s, 0) =Y1 

y(l, t) =y2 

y(s, a) =Ya 

y(O, t) =y4 

for O<s<Z, ·} 

for O<t<. a , .. 
for O<s<Z, 

for O<t<a, 

(2·1) 

in which y;, i = 1, 2, 3, 4, are constant vectors (with effective dimension o). 
According to the prescription in Ref. 2), the external momenta P1, • P2, Ps and P4 

incident at the four corners are respectively equal to Y1- y4, Y2- Y1, y8 - y 2 and 
y 4 - y 8 up to a common factor. We can obtain elementarily a solution of this 
problem in the following form: 

yh (s, t) = (1/n) Re iy1 [l-og -{}1 (u/2l)2 j-{}~ ( (u -l) /2l) -{}1 ( (u + l) /2l)] 

+ (1/n) Re iy2 [log -{}1 ( (u -l) /2l)2j-{}1 ( (u- ia -l) /2l)-{}1 ( (u + ia -l)j2l)] 

- (1/n)Re iys[log -{}1 ( (u- ia)/2l)2j-{}1 ( (u -l- ia)j2l) -{}1 ( (u + l-ia) /2l)] 

- (1/n) Re iy4 [log -{}1 (u/2l//-{}1 ( (u- ia) /2l) -{}1 ( (u + ia) /2l)], 

where 

u=s+it 

and -{}1 (v) IS an abbreviation of -{}1 (vir), r being given by 

r= (log r 0) /ni=ia/l. 

(2·2)*l 

(2·3) 

(2·4) 

Next, let us, by means of the above solution yh (s, t), construct the complex 
position z (s, t) in such a way that 

z (s, t) = xh (s, t) + iyh (s, t) (2·5) 

is analytic in R 0a. If we employ the notation 

Ps=Ya-Y2, (2·6) 

*' Solution of the case of (2·1) was once considered in Ref. 4), when Y2=y4=0 and Y1. Ys 
depend on s (see (3·10)~(3·13) in Ref. 4)). 
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Reciprocal Symmetries of the Dual-Resonance Propagators 2031 

then z (s, t) given by (2 · 5) takes the form 

4 

z (s, t) =- (2/n) "2:, PJ log {}1 (u/2l) (2·7) 
J=l 

up to a constant term. On the other hand, it follows from Green's theorems, 
the Cauchy-Riemann relations and others that 

D[yh;Roa]= fdr(y\ayhfan)= fdr(y\ -axh/ar)= fdr(ayhfar,xh) 

---'; fdr(P(r),z(r)), (2·8) 

where r is an arc length of the perimeter. Hence we eventually arrive at 

(2·9) 

in which k, j = 1, 2, 3, 4 and 

v2=1/2, va=1/2+r/2, (2·10) 

Let us now turn to the ca__se. where D0a is C0a. However, the necessary 
solution of the boundary-value problem has already been listed in Ref. 8). Let 
us tentatively pick out a simple case, as in Ref. 5), where 

Po is incident to (s = 0, t = 0) 

and 

-P·a IS incident to (s=2m (<2l),t=a). 

T 
oc 

1 

Then, corresponding to (2 · 9) one finds 

(2·11)*) 

It should be remarked that in either case we have the theta-functions of the form 
{}1 ((a+ib)/lliajl). This function is known to satisfy the following relation:**) 

*> The rhs is further rewritten as 

1-ri)112 ?J4(m/lllog ro/rri)?J4( -m/lllog r0/rri) J-<•o••a> 12". 

**> See, for example, Ref. 9). 
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2032 M. Minami 

(2·12) 

which fully indicates that l should be a reciprocal of a. It is hence convenient 
to introduce a "reciprocal radius" roo by_ 

roo=exp( -nl/a), (2·13) 

so that 

(2·14)*> 

Applying (2 ·12) to (2 · 9), we thus obtain the symmetrical relation 

(2·15) 

in which 

v1* =0, v2* = 1/2, vs*·= 1/2- (log r "') /2ni, 

P1* = P1, P2* = p,, Ps* =Ps, p,.* =P2 

v14* =-(log r "') /2ni 1 J (2·16) 

and. we have assumed P/=0. 
Similarly, applying (2 ·12) to (2 ·11), we can prove the relation 

I 
7}1 (m. +log ~o I log .ro) 7}1 ( _ m +log ~0 I log .r0 ) ~-<Po. P'a>l2" 

l 2nz m · l 2m . m 

X I 7}1 (m + _!_ t· log roo ) 7}1 ( _ m +_!_I log r"') ~-. (Po.Pal/
2
". 

ia 2 ni ia 2 ni 
(2·17) 

This is less symmetrical except when 

2m=t .. (2·18) 

Suppose (2 ·18) is satisfied. Then (2 ·17) now reads 

I 7}1 (_!_+log ~0 I log .r0 ) 7}1 ( _ _!_+log ~0 I log .r0 ) ~-(Po,Pa)f2" 
. 2 2nz m 2 2m m 

= 1 (log ro) /nil (Po,Pa)2,.. (rlj,2r0 -1f2)-<Po,Pa)f2" 

X 1J1 - +- --- 1J1 +- --- . I ( log r"' 1 I log r"') ·(log r"' 1 I log roo) -<Po.Pa)/2>< 

2ni 2 ni · 2ni 2 ni 
(2·17') 

*> Remark that the relation (2·14) is identical with R 1·R2=n2 of Brink and Nielsen.7> We 
have adopted in the present paper the view-point that a is a proper-time. However, as in ~ef. 6), 
the view that log ro or a is a "specific resistance" is also possible. 
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Reciprocal Symmetries of the Dual-Resonance Propagators 2033 

The restriction (2 · 18) is intuitively natural since the domain is cylindrical and 
(2 ·18) says that the two points to which Po and Pa are incident should be sym­
metrically opposite. 

Before closing this section, we remark that the expression of (2 · 9) continues 
to be the same even if we set y 4 = Y2 = 0 or y 1 = Ys = 0 (though the momentum 
conservation should be more restricted). Suppose y 4 = y2 = 0, as in Ref. 4). Then 
we can· regard yh (s, t) as an eigenvalue of the following dual-position operator 

00 

Y(s, t) = (1/.Jn) :E (B./v)sinv(n/l)s·e-•C"I1lt, (2·19) 
J.l=-00 

v"eO 

where the hermitian coefficients B. are assumed to satisfy the quantum condition 

[8 p 8"' J - ... ~ pp' JJ,- -v'--tVuvJJ'g . (2·20) 

In this case we can write 

(2· 21) 

m which I y; t) IS a simultaneous eigenstate of Y (s, t) for all O<s<l. 
Let us set Ys = y 1 = 0 in addition to y 2 = y 4 = 0 in (2 · 21). Then we are led 

to the following characterization of gY [a]: 

(2·22) 

§ 3. Determination of the weights Uoo[a] and Uy[a] 

Alternatively we can construct, as we did in Ref. 3), a quantum mechanics 
starting with the position operator X~' (s, t) defined by 

X (s, t) = (1/ -Fl) (x0 + p0t) - (1/ vn) f; (8./v) ·cos v (n/l) s · ~-•cn'fl)t. (3 ·1) 
v=-co 

v"eO 

Then, instead of (2 · 22), we have the relation 

(3·2) 

where gx [a] is the one already given at (1· 6). Here the numbering system 
follows the one in § 2. It should be noted in advance that the Schrodinger 
equation for \x; tl implies 

(x; al =(x; Olexp( -iaHB), (3·3) 

where 

00 

HB= -pN2- (n/2l) :E (B.,B-v). (3· 3') 
J.l=-00 

v"eO 

We need further the (indefinite) occupation number states In/) of 8/8':_./v 
constructed from the "vacuum" I 0) defined by 
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2034 Mo Minami 

8/IO)=Oo (v>O) 

Let us first remark that there exists a factor 

(xoa=O; ajx01=0; 0) 

included m (3o2) where lx0 ;t) is an eigenstate of (xo+Pot)o Since 

(xos=O; ai (xo+Pot) 1)=0, (3o4) 

we can verify 

(xos = 0; al Xo1 = 0; 0) = const lim a- 3,;2 exp (- x~1/ a) = const a- 8'12, (3 o 5) 
x 01-o 

where (}0 indicates the effective dimension of Xoo 
-Next we should calculate the factor 

(x,; 01 exp {- (ina/2l) [8,8_, + 8_,8,]} lxv'; 0) 

=:E(x,;Oin,)(n,Jx/;0) exp[- (na/l)vn,], (3o6) 
n, 

where lx,; 0) IS an eigenstate of (8,-8_,)/Vo Notice then that 

(x,; 01 [8,8_, + 8_,8,] In,)= 2ivn,(x,; 01 n,) (3o7) 

proves to be an Hermite differential equation whose solution is (x,; Ojn,)o Hence 
the expression 

(x,; 01 n) = constolim Hn(:X) / (2nn!)112 

x~o 

= const { 
0 for n=odd, 

( -1/2t12n !112/ (n/2)! for n=even, 
(3o8) 

because of the behaviour of the Hermite polynomial Hn (x) o10l It follows then 
that the rhs of (3 o 6) equals 

"' :E (2k) !/ (2kk !Ye-2<.-fl)avk = {1- exp [- 2n (a/l) v n-1/ 2
0 (3 ° 9) 

k=1 

This Is of course identical with a result by Brink and Nielseno7l Thus we arrive 
at 

"' g_,[a] = const (ajl)- 8'12 II {1- exp [- 2n (a/l) v]}- 812, (3 °10) 
V=l 

where (J is the effective dimension of 8, (which we provisionally distinguish 
from tJo). 

Now that we have (3 o10), then, using the change of variable (1° 9), we can 
eventually rewrite (1° 6) as 

JF [ Xs (s), X1 (s)] = const 11dr0r 0 -a,-1 (-log r 0)-8'12 g (1- r 02')- 312 

X exp{ -tD[x"(s, t); Roa]}, (3 oll) 
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which, we stress again, corresponds to (1· 1) . 
Now it is apparent that if we follow a similar line of manipulation, we can 

also put forward the following expression for JF[Ys, Y1J: 

J~[Ys, Y1J = const fdr0r 0 -a,-l g (1- r 02")- 812 exp {tD [y" (s, t); R 0a]}, (3 ·12a) 

which actually corresponds to (1· 4a). The tentative reason why we have erased 
the factor (-log r 0)-8';2 is that Y (s, t) given by (2 ·19) is free from the zero­
mode term, and this corresponds to the fact that in the integrand of (1· 4a) 
missing is the factor a-2 which, however, the integrand of (1·1) possesses. 

Our choice of Y (s, t) of (2 ·19), however, depends on the boundary data 
y 4 = y 2 = 0. Therefore if we more generally suppose the :finite boundary values 
on both sides of R 0a, the situation becomes somewhat different. In fact this 
alternation seems necessary if one wants to bring about the expression of JF[Ys, y 1] 

corresponding to (1· 4b) . In this case we should make use of the variable l/ a 
instead of ajl, as well as roo defined by (2 ·13). Then it may be appropriate 
to put forward the following expression 

(3·12b) 

which now corresponds to (1· 4b). This time we have taken into account the 
zero-mode term and Y (s, t) should t"!)rn to be of the form 

Y(s, t) = (1/ .JT) (y0 + q0s) + (1/ [ii) :£: (B.' /v) ·sin v (n/a) t · e-•< .. fa>•. (3 ·13) 
v=-co 

v"rO 

Here y~ and B.' are non-commutable with q0 and B'_v respectively in the same 
way the set Xo, Po, B. and B-. satisfy. 

Let us next turn to the pomeron~propagator case (when D 0a=C0a). The 
expression of AF[xa(s),x0 (s)], however, remains nearly the same as (3·11) except 
for the fact that ll(l-r02")-812 in (3·11) should be replaced by fl(1-r02")- 8 • 

This is because the number of coefficient operators of the following X (s, t) for 
the pomeron is doubled :6> 

X (s, t) = (1/ .J2i) (Xo + Pot) 

- (1/V2n) :£: [(A./v)sinv(n/l)s+ (B./v)cos v(n/l)s]e-•< .. JZJt: 
JJ=-co 

v"rO 

(3·14) 

In accordance, JF[Pa, Po]*> corresponding to (3 ·12a) should take the form 

*> We write dp[pa, p0] for dp[y(s)] of (1·7), since simple relations between momenta and 
dual positions are missing in non-planar cases. 
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X {}t -+-- -- {}t --+-- --I (m log. To llogTo) ( m log. To llogT0 )1-CPo.Pa)/2" 

l 2rei rei .l 2ni rei · ' 
(3 ·15a) 

while the one corresponding to (3 ·12b) should be of the form 

X {}t -+--- {}t --+---r . I (m log T co I log T co ) .(· m log T co jlog T =) ~-(Po,Pa)/2" 
l 2rei ni ' l 2rei i rei 

(3·15b) 

Note that we have inserted by hand the factor To -e(Po,Pa)/4" in (3 ·15a) and T;;,•CPo.Pal/4" 

in (3 ·15b), whereas a straight-forward result from the definition implies c = 0. 
However, as will be demonstrated below, if we are allowed to put c = 1, then 
we shall be led to a more symmetrical result. Let us remark that, when c = 1, 
this extra factor cancels the T0~0 or T"' ~o singularity arising from the fJ1-func­
tions in the integrand. 

§ 4. Reciprocal symmetries of the propagator 

We are now in a position to consider possible symmetries appearing on full 
expressions of the dual-resonance propagators. Let Ull ,first try to exchange the 
integration variable in (3 ·12a) from To to T = by use of (2 ·14): 

(4·1)' 

m which To= exp (re2/log T co). Let us next exploit the relation (2 ·15) and the 
well-known formula 

co = II (1- To2•)-l = re!f2To1J12r;;,ll12 (log T co)-1/2 II (1- T~)-1 (4·2) 
P=l v=l 

on the rhs of (4·1). llhen 

By our requirement that the integrand of ( 4 · 3) should conform. to the integrand 
of (3 ·11) (in the same way as the integrand of (1· 4b) does to that of (1·1)), 
we obtain the equations 
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Reciprocal Symmetries of the D?fpl-Resonance Propagators 2037 

-ao+ (o/24) =0, } 
(4·4) 

2+(o/4)+ L:CPJ> pk)/n=oo/2. 

Incidentally, if the first equation of (4·4) is satisfied, we have the factor r-;,"'o-1 

in ( 4 · 3) and this corresponds to the fact that the factor exp (- im 02a/2) in (1· 4a) 
becomes. exp(-imo'/2{1) !n. (1·4b). Now suppose all p1 =0. Then we have 
o=24a0 and oQ=4+12a0• If a 0 =1, we shall obtain o=24 an,d o0 =16, the last 
being compatible with our r~cent result c ( = o0/2) = 8 in Ref. 11). If we instead 
put o=oo, then 

(4·5)*l 

Let us next choose the second expression (3 ·12b). In this case, the require­
ment we should impose turns to be tHat if we write (3 ·12b) in terms of the 
r 0-variable, then the factor in the integrand made up of -log r 0 should disappear 
in order to ~roduce only a pole singularity in momentum space. This is also 
the case when (1· 4b) is transcribed back to (1· 2) with the use of (1· 5). On 
exploiting (2 ·15) and ( 4 · 2), we readily have 

I 
log r co IE(PJ> P•l1H I ( I log r 0 ) ( I log r 0 ) ~-<PJ· P•)IH X --.- II {}1 vk --.- {}k v 1 --.- • nz k"cJ nz 1 nz , 

(4·6) 

Hence we obtain 

-ao+ (o/24) =0, } 
-2+ (oo/2)- (o/4)- L:(PJ,Pk)/n=O, 

(4·7) 

which, however, 'is exactly the same with (4·4). This duality was also alluded 
in Ref. 11). 

we can formally carry out ,a similar procedure in the case of pomeron 
propagator. Let us first rewrite JF[Pa.Po] of (3·15a) for 2m=l, (2·18), as 

JF[Pa,Po] 

X {}1 -+-- -- {}I --+-- --I ( 1 log r 0 llog r 0 ) ( 1 log r 0 llogr0 )J'-(Po•Pal12H 
2 2ni ni 2 2ni ni 1 

r1 . = COllSt. Jo dr cor-;,1- (6(12)- (Po• Pa)/4Hr0ao + {6/12) + {1-s) (p 0, Pa)/4H 

X (lo~ r co)-2-(S/2) II (1- r~)-8 --. _o 
co I log r I(Po· Pa)2H 
v~l nz 

*l Fairlie and Roberts12l once remarked that a direct application of the Weierstrauss condition 
(of the Plateau problem) implies 2J (p;, p.) =0. 
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xi1J1(.!_logr"" 11ogr"')1}1(.!+ logr"' llogr"')l-(p,,p.)/2
• 

2 2ni ni 2 2n~ ni . ' 
(4·8) 

m which we have also used ( 4 · 2) and (2 ·17'). By a direct inspection, we 
shall obtain, in place of (4·4), the following condition:· 

-ao+ (o/12) + (1-e) (Po,Pa)/4n=O,} 

2+ (o/2) +(Po, Pa) /2n=oo/2. ·· 
(4·9) 

It should,. however, be noticed that we have necessarily the factor r;;,<p,,p.l/4" in 
( 4 · 8) which cancels another reciprocal factor arising from the 1J1-functions. Hence, 
by comparison with (3 ·15a), we should be led to a more symmetrical situation 
when we choose e = 1. Then the first equation of ( 4 · 9) implies that a 0 =o /12. 
Therefore it follows from a 0 =2 that o=24, which is again the magic number 
of dimensions. The second equation tells us that if o=o0, then (Po,Pa) = -4n. 

The final concern is with the rhs of (3 ·15b) rewritten for 2m= l as 

"' X (log ro)-2+(B,J2)-(BJ2) II (1- ro2•)-s 
Jl=l 

X 1J1 ---+- -- 1J1 --+- -- · I 
log r"' l(p,, Pal 12" 1· ( log r 0 . 1 I log r 0 ) (log r 0 1 I log r 0 ).~-(p,, Pal/2" 

ni 1 2ni 2 ni , 2ni · 2 ni 
( 4 ·10) 

It is however apparent that the condition derived from the requirement that the 
multiple of -log r 0 in the integrand should be zero is exactly identical to ( 4 · 9) . 

We have thus far given an affirmative answer to the possibility of a recipro­
car symmetry which can formally exist between the representations of dual-reso­
nance propagators. As to its physical implications or .its impact on further 
development of theoretical sides of the models, the present author has not yet 
any opmwn. However, the relation log r 0 ·log r"' = n2, (2 ·14), on which the 
reciprocal symmetry naively depends, seems to suggest that this symmetry is of 
new character somewhat different from the v eneziano duality which may be 
considered as depending on the relation of the type r 0 + rd' = 1. In this con­
nection, it should be recalled that a parallelism rather strongly lies between the 
non-linear relation (2 ·14) and the relation which defines the temperature of the 
dual net of the two-dimensional Ising system, that is, the relation of the form' 
sinh(J/kT) ·sinh(J/kT*) =l.*l On the other side, this tells us a possibility of 
a thermodynamical description of our symmetry (for example, it may be conjec­
tured that the critical case of the Douglas condition for the pomeron propagator5l 
can be interpreted as corresponding to a Curie point). 

*l This is also alluded by Cremmer and Scherk.13l 
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Finally it is also interesting to note that our symmetry is truly reminiscent 
of the so-called Nelson symmetry14l which, roughly speaking, says that an inter­
~hange of the time and the length of one-volume leaves an inner product invariant. 
Nowadays it is known that Nelson's symmetry has a trend of bringing a vast 
economy in the area of the so-called P(¢)2-field theory.*l Our reciprocal symmetry 
is also expected to work as a tool to bring on a new interpretation and a further 
characterization of the dual"resonance model. 
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