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We give an explicit derivation of the critical dimension of space-time associated with 

the Veneziano model starting from the path-integral expression based on a Dirichlet-type 

boundary-value problem. It is shown that our expression for four-leg amplitudes happens 

to reduce to the beta-function formula of Veneziano only when the effective number of 

transverse dimensions is 24. Up to the goal, the transformation properties are not self

evident since our representation has a batch of the theta ·functions in the integrand_ Our 

next concern is therefore with a discussion how the Mobius invariance or the reciprocal 

invariance is connected with the critical dim~nsionality. 

§ 1. Introduction 

In a previous paper1l (referred to as [I] in what follows) we showed that 

there exists an apparent resemblance between the integral representations of the 

dual-resonance propagators in momentum space and those in position space when 

the number of the effective dimensions of space-time is twenty-four. Briefly 

speaking, this symmetry holds when we replace the proper-time {3 by the re

ciprocal one 1/{3, so that we termed this property the reciprocal symmetry. 

In the present paper, we wish to ask the question as to whether we can 

impose a stronger requirement that the momentum space representations of the 

Veneziano amplitudes are invariant in themselves against the reciprocity trans

formations. We only deal with the four-point case, but the answer to be con

cluded appears to be general and we see that they are really reciprocally invariant 

if the effective number of transverse dimensions is again 24. 

The clue to our plan is firstly provided by a reconstruction of the amplitude 

in the language of the Feynman path-integrations, and then it will be proved 

that the amplitude reduces to the Veneziano formula only for the critical number 

of dimensions, and thirdly. it will be concluded that the obtained formula is 

invariant under the reciprocity transformations. To treat the dimension ex

plicitly we adopt a rectangular domain as the domain of the field variables 

(dual-position d-vectors) and make extensive use of Jacobi's 17-1 (zlr)-functions. 

This was also the case in [I] . 
It should be recalled in advance that, while 17-1 (zlr) is an elliptic function 

with respect to z, it also behaves as an elliptic modular function with respect 
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1032 M. Minami 

to r.2J,SJ Our reciprocity is just concerned with the change t"---'> -1/r. In this 
sense, our proposition can be thought of as discussing the critical. dimension by 
requiring the integrand to be invariant against the modular group generated by 
't"---'> ~ 1/r. On the other hand, transformations with respect to r can explicitly 
be related to those with respect to z through the so-called Jacobi's imaginary 
transformation~. Hence it is also possible to restate the above proposition from 
the viewpoint of the Mobius transformation concernig z. It is for this reason 
that we a:r:e in fact able to verify the proposition only by the requirement that 
the formula is Mobius invariant, before we appeal to the reciprocity. 

Incidentally it should be remarked that the critical value of dimension will 
be specified in connection with the invariant volume elements, so that our pro
position can be a parallel to a result by Mandelstam,4l though the proceduce to 
the end appears quite different. 

In the second section we prepare, following [I], the functional integral ex
pression for the four-point' amplitudes, which is reasoned as corresponding to a 
generalization of the conventional Fe.ynman propagator. This· will be established 
within a framework of the Dirichlet problem yvith the aid of the dual-position 
vectors y (s, t) ."J In § 3 it is proved that the expression constructed in § 2 
agrees truly with the Veneziano amplitude iff the number (J of transverse degrees 
of freedom is twenty-four (and the intercept a0 is unity). The Veneziano formula 
is known to be Mobius invariant. However, our expressions up to the goal are 
written down by the theta functions so that t)le transformation properties are 
somewhat obscure. Therefore, in the first half of. § 4, we try to explicate its 
relation with the familiar homographic transformations of the unit-disk by defining 
the Koba-Nielsen variables. In the latter half of § 4 we introduce explicitly the 
reciprocity transformations and shall confirm that our conclusions in the text 
can also be drawn from the sole reqpirement of the reciprocity invariance. 

§ 2. Preliminaries 

In this section we prepare the expression for the amplitude with which we 
should start. The line of thought adopted follows closely that of the previous 
work, so that almost all materials we here present aFe those recapitulated from 
[I]. There is, however, one delicate difference in that we explicitly pay at
tention to the condition that incoming particles are tachyons. 

The fundamental tool which figures in the first stage is the dual-position 
function y(s, t) which is a d-dimensional Minkowski vector.*l Let us assume 
that the domain of y (s, t) is 

R/ = {s, tj O<s<l, O<t<f1} (2·1) 

- d-1 *> The Lorentz product of y, and y, is denoted by 
however y' for (y, y). 

(y,, y,) =.:vf•>y!•>- Lj- yf1lylf>. We write 
J=l 
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Fig. 1. 

and that y(s,t) takes the following values at the boundary 8R/: 

· y(s, 0) =Y1, y(s, {i) =Ys for 

y(l, t) =Y2, y(O, t) =Y4 for 
(2·2) 

in which y" j = 1, 2, 3, 4, are implied to be constant. This last assumption infers 
that the case we treat is that of four particles coming into the corners; their 
momenta k1 being given by the relations 

2a'nk~=Yl-Y4, 2a'nks=Ys-Y2, } 

2a'nk2 = Y2- Y1, 2a'nk4 = Y4- Ys. 

The Feynman kernel associated with this process is of the form 

K (Yl, Y2, Ys, Y4; {i) = r ff)y (s,, t) exp {-1-D [y (s, t); R/J} JR,P 4na' 

= g ({i) exp {-1-D [yh (s, t); R/l} , 
4na' 

(2· 3) *l 

(2·4) 

in which D [y or yh; R/] is the Dirichlet integral with respect to y or yh. Here 
yh (s, t) is the dual-position harmonic in R/ and is assumed to enjoy the same 
boundary value ~s y (s, t). Consequently if 'we write 

y(s,t)=yh(s,t)+y0 (s,t), (2·5) 

then y 0 (s, t) is a deviation which must vanish at oR/. In terms of y 0, g ({3) in 
(2 · 4) is written as 

g({3) = f ff)y0 (s,t) exp{-1-D[y0(s,t);R/J} JR,P 4na' 
(2·6) 

From this, it follows easily that 

= 
g ({i) = const l1 (1-r02") -B/2 , (2·7) 

Jl=l 

where r 0 is given by. 

*> a' can be identified with the Regge slope. For the present; it is a resistance if k1 is re· 
garded as the current and y 1 as a voltage. 
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(2·8) 
and o is the effective dimension; that is, o =d-e, if e is the number of the 
dimensions which do not contribute due to an implicit presence of gauges: We 
however do not address ourselves to e itself in this paper. 

As verified in [I], the harmonic' y" (s, t) which is subjected to the boundary 
condition (2 · 2) is solved to be the imaginary part of 

4 

z(s, t) = -4a' :E k, log -&1 (u/2l), (2·9) 
J=1 

where u=s+it, and {i}(u/2l) is an abbreviation of Jacobi's theta function 
-&1 (u/2lllog ro/rci). 

In [I] we assumed that k1 are all light-like in order to prevent the Dirichlet 
integral from diverging. This time, however, we must take the condition 

a'k/= -ao (2·10) 
into account. Hence we are forced to remove the divergence by hand. It is 
easy to see that the following is the divergent terms in D [y"; R/] : 

-2a'k/ logl-&1 (v1 +e) I 

{- 2a' k/ logl-&t' (0) I - 2a' k/ log e · 
= - 2a' k/ log I r 0 - 114-&1' (0) I - 2a' k/ log e 

when e~o. Here the v/s denote 

for I= 1, 2, 

for j=3, 4, 

1 1 log r 0 log r 0 v1 =0, V2=-, Vs=-+ , v,= . 
2 2 2-rci 2-rci 

(2·11), 

(2·12) 

On reference to the usual procedure, *l we readily recognize that it is the log e 
terms of (2·11) that we should erase. Doing this operation, we find that the 
formula ~hich takes the place of (2·19) in [IJ turns out to be 

exp {-1-D [y"; R/J}j =ro-a'-&/ (0) sa, IT l-&i (v,)-&, (vi) 1-aa'(kj,.J:J) 
4-rc a' . (2·3) i>, 

(2·13)**) 

*> In the conventional operator formalism, one drops the diverging terms by invoking the 
normal ordering: 

. [v2a',.o; (k, a!-a.)] . _ [v'2a',.o; (k, a))] '[ v'2a',.o; (k, a,)] . exp ;=, v' 11 • -exp f,:', Vv exp - f.;', v'v .• 
which otherwise gives rise to the exponent of 

2a' [iJ (k, a!), iJ (k, a,)]· = -2a'k•log 8 . 

·-· v' lJ ·-· v' lJ -
**> Note that (2·9) can also be written as 

• z(s, t) =-4a' ~ k1 log [t9-1 (u/2l)j?Jf(O)] 
J•l 

owing to the coservation ~ k1=0. When k'=O, the common factor t?-f(O) does not contribute to 
(2 ·13), so that (2 • 19) in [I] remains valid. 

Recall, on the other hand, that the factor t?-{ (0) in (2'·13) reveals itself already in the one-loop 
diagram case. See, for example, Eq. (3·3) in Ref. 6). 
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where 

To see the last equivalence of (2 ·13), we have only to consult 

Summing up, we have thus found that the amplitude 

J:oo d[ie+"o"P!Lf{ (Y1, Y2, Ys, y,; {3) I (2·8) 

(2·14) 

(2·15) 

(2·16) 

which is originally a generalization of the Feynman propagator/> can be para
phrased as follows : 

(2·17) 

Then our programme of relating (2·17) with the Veneziano formula starts. 

§ 3. Critical dimension and the beta-function amplitudes 

Now that (2·17) is obtained, the argument to the conclusion is straight
forward and simple. The key to the. method lies in rewriting further the integrand 
in (2 ·17) in terms of -&2 (0), -&3 (0) and -&4 (0) : By virtue of -&1 ( v 2) = -&2 (0), 
-&1 ( v 8) = r0 - 1/4 ·-&a (0) and so on, we can firstly verify that 

where 

II j-o., ( V ,) -& J ( Vt) ~-2a'(kt,kJ) = ro"•l-&s (0) '1-21-&2 (0) '-&, (0) '11-ao 
£>J 

X 1-&2 (0) 4 )-1-a0 -a'•l-&4 (0) 4 )-1-a0-a't 

-&a(0) 4 -&a(0) 4 ' 

s=(k1+k2) 2 and t=Ck2+k8) 2 • 

On the other hand, widely-known formulae tell us that 
00 

II (1- ro2•) -8f2 = 2a;sr0a;24 ( -&2 (0) '-&a (0) '-&, (0) ') -8f24 
.V=l 

and 

-&1' (0) Ba0 = 7CBa0 ( -&2 (0) '-&a (0) '-&, (0) ') 2a0 • 

These bring Eq. (2 ·17) to the form 

v (k) = COnSt fdro ro -1-a,+8f24-&s (0) -8f6-B+Ba, ( -&2 (0) -&, (0)) -8f6+4+4ao 

(3·1) 

(3·2) 

(3· 3) 

(3·4) 

(3·5) 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/52/3/1031/1841167 by guest on 09 April 2024



1036 

Let us write 

M. Minami 

). = '19-2(0) 4 

'19-s (0) 4 

Then it follows from the relation '19-2 (0) 4 + '19-4 (0) 4 = '19-3 (0) 4 that 

'19-4 (0) 4 

'19-s (0) 4 
1-).. 

(3·6) 

(3·7) 

It should be recalled that ). depends explicitly on r 0 since '19-1 (0) ='19-J (Oilog r0/n-i). 
Therefore we should next be concerned with the change of variable from r 0 

to A. Incidentally, ). is never a new notation, and its use can be traced back 
to Weierstrass et al. (about 1850) .3l In fact, such properties of ). as analyticity, 
automorphism and- so on have ever been exhausted.8l· 2l What follows 'is a some
what elementary result: If we make the change r=log ro/n-i to r + 1, th{m ). 
becomes ). (). -1) - 1 and also if we do the change 

then 

Hence 

and 

1 
r~-- (3·8) 

r 

A.=O when 

J.=1 when 

ro=O l 
ro= 1, f 

(3·9) 

(3·10) 

though it is known that ). is analytic and nowhere takes 0 or 1 in the upper 
half plane of r =log r 0/n-i. 

The form.ula which we next need is provided by -

dro =d). fJs (,_0"---) 4 __ 

ro '19-2(0)''19-4(0) 4 
(3·11) 

which however we missed to find in literature, so that we shall record a proof 
of (3·11) in the Appendix. 

In the light of (3 ·10) and (3 ·11), we can eventually rewrite (3 · 5) as 
follows: 

X ( -&2 (0) '19-, (0)) -8f6+4a0). -1-a0 -a's (1- ).) -1-a0-a't , (3 ·12) 

which is apparently equivalent to the Beta-function amplitude of Veneziano: 

V(k) =constB(-a's-ao, -a't-ao) (3 ·13) 

only if 
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Functional Approach to the Critical Dimension in Veneziano's Model 1037 

-a0 +~/24=0, -~/6-4+8ao=0, (3·14) 

whence 

ao=l, ~=24. (3·15) 

We have thus shown that the four-point amplitude (2·17) produced by the 

functional integration agrees with the Veneziano amplitude only when the number 

of the effective· dimensions is just 24.*l For other values of ~' the integration 

measure happens to have some factors which may give rise to singularities other 

than poles and destroy the Mobius invariance. 
It is, however, somewhat implicit how the Mobius transformation works if 

we make exclusive use of the -&rfunctions_ to deal with the integrand and the 

integration measure. We therefore try, in the first half of the next section, to 

reveal the relation between the Mobius invariance of the Koba-Nielsen kernel 

and the possi.ble automorphism of the kernel described by the -&rfunctions. To 

this ":nd, we differently rewrite Eq. (2 ·17), when subjected to (3 ·15), in the 

form: 

with 

§ 4. The Mobius invariance or the reciprocal invar.iance 
of the Veneziano formula 

(3·16) 

(3·17) 

In the first half of this section we discuss the invariancy of the integrand 

by means of Mobius transforlations, while the second half is concerned with 

the same invariancy from the viewpoint of the reciprocity foresh~dowed in [I]. 

4·1 The Mobius invariance 

Let p1 be the Koba-Nielsen variables on a unit circle Cl p1J = 1). Then it 
is conventional to pick out the factor 

as being the integrand invariant against the group of automorphism of the up.it 

circle: 

P ~ PJ-Po ei"' 
J 1 - ' . . -PJPo 

(4·2) 

*> The c,andition ao=l is no more than a consistent output since it is rather well known 
from the outset that our functional integral has a connection with the Veneziano model' only when 
ao=l. 
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1038 M. Minami 

where I Pol <1 and r:p is real. Let us here recall the following conformal trans
formations which send a unit disk into the rectangular domain Rl :7l 

{}I((u- uo)/2l)1J1 ((u + Uo)/2l) i¢ 
p e ' 1JI((u- 'llo)/2l)1J1((it + 'llo)/2l) 

(4· 3) 

in which u = s +it as before and u0 ( E R/) and ¢ denote also three parameters. 
From this it follows that 

(4.·4) 

for p1 should correspond to v1 which characterizes j-corner of R/. 
Now we try to transform the invariant ( 4 ·1). by ( 4 · 4) : Firstly we find 

= ITi>tl {}i(v,){}_l Vi)l- 2"''(k,,kJ) I1Jt((u + 'llo)/2l){}t((u- 'llo)/2l)l-2"'' liP•· kJ) 

lD=tl {} 1 (uo/2l) l 2"''kJ' 

(4·5) 
in which we have restored v 1 again. The derivation of (4· 5) is somewhat 
complicated but straightforward by use of the so-called addition formulae of the 
theta-functions. BJ 

Secondly we find 
4 

II IPJ+t-PJI"'• j=l 

_ IT~=d{}J+t(v,)1Jlv1+1)1 "'•I 1Jt((uo + 'llo)/2l)1Jt((uo- 'llo)/2l)l'"'• 
- n~=li1Jj('llo/2l) 12"'' . 

(4·6) 

Equations (4·5) and (4·6) combine to reveal that (4·1) equals 

which however is identical with W (k; log r 0/ni) defined by (3 ·17) since 

We are thus convinced of the fact that W (k; log r 0/ni) plays the same role as 
(4·1) and is Mobius invariant (against the homographic transformations of the 
form ( 4 · 2)) . This assertion may of course be directly proved by means of the 
A. function, but the correspondence· of W (k; log r 0/ni) to ( 4 ·1) seems more ·in
formative for further outlook. 

The integration measure remaining in (3 · 16) is equal to A. -I (1- ,1.) - 1dA., 
w,hich is obviously invariant under A-~1-A. In the light of (3·8) and (3·9), 
this transformation corresponds to r~ -1/r, which however is just the reciprocity 
transformation once featured in [I]. We therefore discuss next the same prob-
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Functional Approach to the Critica.l Dimension in Veneziano's Model 1039 

lem from this point of view. 

4 · 2 Reciprocal in variance 

By reciprocity, we originally meant the associated properties of dual-res

onance quantities which show up when one interchanges l and /3 with each 

other (or l/ /3 by {3 /l). This is somewhat concerned with a symmetry which 

appears when one tries to interchange the s-axis and the t-axis, and may be of 

practical importance when one is forced to compare the quantities for 13~0 with 

those for f3~oo. In view of this, let us define 

(4·9) 

as a companion of (2 · 8). Then 

log ro·log r co =n2 • (4·10) *> 

Jacobi's theta functions '!9-1 (zlr) with r=log r 0/ni are related to '!9-r(z*lr*) where 

r* = -1/r =log r colni through the so-called Jacobi's imaginary transformations: 

1-&-,( a~ib llo:iro )I=( -l:gro r2ro"'(a.-b.)fl'l-&,.( b-;ia llo!;co )l· c4 . 11) 

where }* stands for 1, 4, 3, 2 when j= 1, 2, 3, 4 respectively. By use of (4·11) 

we can verify 

I ( *'log r co) ( *!log r co )l-2a'(ll:,,ll:,) 
X ll 19-i• VJ • '!9-J* Vi • , (4·12)**> 

i>J _ nz nz 

where 

v1* = 0, v2* = _!_ Vs* = _!_ 
2' 2 

log r co v * __ log roo 
2ni ' 4 - 2ni 

(4·13) 

Similarly we have 

I '!9-2(0ilog ro/ni);~4(0ilog ro/ni)' r 
=I (ro/r co) 1/4 (log ro/n) l-4a,, '!9-2{0ilog r colni~~4 (Oilog r co/ni)4 r. ( 4 ·14) 

,*> On this relation, it was once physically interpreted by Biink and Nidsen•> that a' log r0 

and a' log r ~ are "resistances" of the rectangular medium. 

**> Equation (4·12) is a detailed version of (2·15) in [I] for the case k' ~ 0. Numbering in 

(Z·15) of [I] is asymmetrical since we have miscited the foregoing (2·12) (which is corrected here 

as (4·11)). 
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Hence it follows that 

(4·15) 

On the other hand, it can also be shown 

dro ffa(ollog.ro)'=- dr= ffa(oJlog·r=)' 
ro 7rt r"" nz 

(4·16) 

so that the integrand including the integration measure is invariant against the 
reciprocity transformations. (To prove ( 4 ·16), it suffices only to combine ( 4 ·10) 
and (4·11) for j=j*=3.) Any way it has now been clearly turned out that 
we cannot establish the Mobius invariance or the reciprocity invariance for other 
values of (J than 24 if we retain the form of (3 · 5) or (3 ·12). '·' 

§ 5. Concluding remarks 

We have thus far succeeded in showing how the critical number of space
time dimensions which underlies the Veneziano amplitudes is connected with the 
Mobius invariance or the reciprocity invariance. Conversely, our success justifies 
our preference for the functional integral approach based op the dual-positions, 
and also justifies us in associating a rectangular domain with the beta-function 
amplitudes.*l In fact, we consider that the number (J is explicit in {)Ur frame
work because of the rectangular domain through the volume element factor 
il;'=1 (1- r 02") - 812 • On the other hand, we are not led to make mention of e 

· itself where e = d- (J; there will be no gain until the projection to the physical 
states is explicitly taken into account. 

Our consideration has been restricted to a four-leg process. However it 
may be possible to extend it to the case where II\any particles come into the· 
rectangular medium, if we modify the boundary condition (2 · 2). In this case, 
the conformal transformation ( 4· 3) is still available, while ( 4 · 4) should corre
spondingly be complicated. To this end, the manipulations in § 4·1 may be of 
practical help. 

Appendix 

We here verify (3 ·11). Since A. ( = {}2 (0) 4/&3 (0) 4) 1s explicitly given by 

A.= 16r ll;'=l (1 + ro2•) 8 

0 rr;=l c1 + d"~1) 8 • 

(A·1) 

we may derictly obtain dA/ dr0• We however prove (3 ·11) here less labourously 

*> The present author once thought of a picture'•> in which ,\ is identified with sn2 (Z, k), 
instead of &.(0) 4/&,(0) 4 • In that case l.:..A=cn2 (Z, k). It must also.be possible to carry out a 
similar argument if one iti able to determine the volume element,· . 
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Functional Approach to the Critical Dimension in Veneziano's Model 1041 

with the aid of some known formulae. Let us first recall the relation8> 

ro=exp( -nK' /K), (A·2) 

where K and K' are the complete elliptic integrals of the first kind given by 

K = !!_p (__!_, __!_, 1; ;.) =!!_~a (OJ log ro/ni) 2 , l 
2 2 2 2 

K'=!iF(l_, __!_, 1; 1-).) =!!___~s(OJlog roo/ni) 2 , . 

2 2 ~ 2 

(A·3) 

). being originally termed as k 2• On the other hand we have 

_E_p (__!_ __!_ 1 · z) 
dz 2' 2' ' 

(A·4) 

Thus we can verify 

d (K') 1 [K' E K'E] 
d;. K = 2).(1-X) K-K-!<.2 ' (A·5) 

where E and E' stand for the complete elliptic integrals of the second kind 
·given by 

(A·6) 

It is fortunately known that EK'+E'K-KK'=n/2 (Legendre's relation).8> Hence, 

(K') 'n 1 d). 
d K = - 4. K 2 • ). (1 - ).) . (A·7) 

Recalling (A· 2) and (A· 3) as well as (3 · 6) and (3 · 7), we eventually obtain 

(3·11). 
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