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Following Schrodinger's hint that the charge independence of nuclear forces is analogous 
to the mass-independence of the gravitational interaction required by the equivalence princi
ple, we construct a non-Riemannian geometry in which the worldlines of particles moving in 
combined gravitational and scalar meson fields are the paths of space-time. A geometric 
Lagrangian which yields the coupled Einstein-Yukawa equations is given. A characteristic 
"order of magnitude" difficulty of geometric unified field theories can be examined here in 
closed form. 

§ I. Introduction 

In the first years after the initial success o£ Einstein's geometric theory of 

graYitation, many theorists believed in the possibility of a unified geometric theory 

of gravitation and electrodynamics, at that time the only known interactions.!) 

A major factor in discouraging most physicists from 1vor king on geometric unified 

field theories was the discovery of new types o£ interaction in the nucleus, and 

Yukawa's'J recognition that ne1v fields had to be introduced to describe nuclear 

forces. It is, indeed, difficult to imagine any historical scenario, consistent vvith the 

existence of life, in which the gravitational and electromagnetic interactions ~would 

not have been studied fairly thoroughly before the discovery of the strong and 

weak interactions. However, it is at least logically possible to ignore electro

magnetic (and weak) interactions, and to try to formulate a very simple model 

m which at least part o£ the strong interaction is described in terms of geometry, 

as is gravitation in general relativity. 

There must be some physical motivation to giVe direction to our mathematics. 

The main thing that motivated Einstein's geometrization of grincitation was the 

fact that the acceleration of a test particle in a gravitational field does not depend 

on that particle's mass or composition. Schriiclinger31 pointed out that the charge

independence of the strong interaction between nucleons suggests that the nuclear 

force is closer to the gravitational interaction in this regard than is the elec

tromagnetic force. This suggestion was made before the proliferation of known 

hadrons, and the analogy should not be pushed too far. (For example, the inter

action between a nucleon and a A0 ob\'iously cannot be the same as that between 

two nucleons: the vertex A-> A+ i7 cannot occur, because the A has 1sosp1n zero, 

and the Tc has isospin one.) Nevertheless, it seems worthwhile to take Schriicl-
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inger's suggestion as a first step toward unification of gravity and nuclear forces. 
The model which will be presented in the next section is rather artificial, and 

one may well wonder what value it has. It is certainly of interest to show that 
part of the strong interaction can be geometrized, but it is perhaps of more impor
tance that we can construct a unified geometric theory which is not beset by 
difficulties of calculation or interpretation (as are the non-symmetric theories of 
Einstein and Schrodinger4'), so that the physical content is clearly revealed. 

In particular, we encounter a difficulty with the strength of the "strong" 
interaction in this model, even though the form of the field equations is satisfactory. 
This difficulty will be discussed in the third section. It is probably characteristic 
of geometric unified field theories, and reasons will be given for believing it to 
be non-fatal. 

§ 2. Geometric representation of the pion field 

The equation of paths in a non-Riemannian space with the symmetric connection 

(1) 

lS 

(2) 

Here the Christoffel affinity {%r} is formed in the usual way from the metric g,,., 
and the vertical stroke indicates covariant differentiation with respect to this affinity. 
C" Pr is a tensor, symmetric in (3 and r. u~ is the unit tangent to the path (U~-'U~ 
= + 1), to be identified with the four-velocity of a nucleon. The term on the 
right of (2) is a four-acceleration produced by the non-gravitational interaction. 

In particular, we may take5' 

(3) 

with ¢ a scalar or pseudoscalar field. (C"pr is, of course, a pseudotensor in the 
latter case, which corresponds to actual pions. Presumably we must then call 
T%r a pseudo-affinity. I shall continue to use the words scalar, etc., since I shall 
not be considering reflections here.) Note that (3) does not give Weyl's affinity 
for the vector field ¢,a, and that this approach to the scalar field is therefore 
different from the recent one of Rothwell. 6' 

With the choice (3), the path equation (2) becomes 

(4) 

which is the equation of motion for a particle in a scalar field. (A mass and 
coupling constant will be supplied in the next section.) In particular, we find 
that U~-'U,U" 1 P=O, so that the four-velocity and four-acceleration calculated with 
the Christoffel affinity are orthogonal. 

We now need field equations for the coupled gpv and ¢ fields. The Ricci 
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tensor for our affinity is 

where B,. is the Ricci tensor formed from the Christoffel affinity. We note in 
passing that R,. is symmetric. 

The curvature scalar, which will form the mam part of our Lagrangian, 1s 

(6) 

Since ¢ is a geometric object-it, along with g,., determines the affinity-our 
requirement that the theory be purely geometric will allow us to combine any 
scalar function of ¢ and its derivatives with R in a Lagrangian. 

It is first convenient to subtract the term (9/2) ¢1"" from (6). Actually it 
is a matter of comparative indifference whether this is done or not, for when 
multiplied by v'-g, this term becomes a pure divergence, ((9/2)-v'-g¢•"),". It 
will thus contribute nothing ~o the field equations if the variations o¢ in Hamilton's 
principle have vanishing derivatives at the boundary, as well as vanishing there 
themselves. But it is simplest to just eliminate this term. 

We may also add a cosmological term to R, but this need not be a constant, 
since functions of ¢ may be used. If the field equations for ¢ are to be linear 
and homogeneous, this term must have the form - (2A+9m2¢2/4). Here A is 
the usual cosmological constant, and m is another constant with the units of an 
inverse length. ( ¢ is dimensionless.) The Lagrangian is then 

L= v' -g[R- ~ ¢1"a-2A-! m2¢2] 

= V- g [B- 2A + ! (¢,rx¢,.ag".8- m2¢2) J. (7) 

Variation of g,. will give the Einstein equations 

(8) 

and variation of ¢ yields the Klein-Gordon equations 

(9) 

One could easily construct more complicated theories. For example, the term 
- (9 / 4) m 2¢2 in the Lagrangian could be replaced by a more general function of 
¢, giving rise to a non-linear self-coupling for the scalar field. One could also 
multiply R by functions of ¢, rather than simply add such functions. This would 
introduce features similar to those of the Brans-Dicke theory.n 

It should be noted that, when the Lagrangian (7) is written explicitly in 
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terms of g1,v and C",P, the last term is non-local since C",P depends only on the 
gradient of ¢. This non-locality would not arise for a massless scalar field ( m = 0). 

With the connection given by (1) and (3), the change in length of a vector 
A# on parallel displacement through dx" isn 

and this vanishes when dx" =A" dA., with }, some scalar parameter. In particular, 

the length of the unit tangent U" to a curve does not change along the curve. 
However, the length of a vector is not, in general, integrable. We cannot yet say 
l1ow this should effect the structure of nucleons in our theory, for their structure 

is determined by the same field ¢ which is responsible for the changes in length. 
A correct treatment of the nuclear interaction must, of course, be in accord 

with quantum theory. The ¢ field can be quantized in accord with the usual 
rules, but in principle this requires also that the gravitational field be quantized, 
and this is much more difficult. 

It has been shown that nucleons, treated as structureless classical particles 
whose worldlines are the paths of space-time, will interact via a Yukawa potential 
as well as by means of Einsteinian gravitation. One naturally wonders if it is 
possible to introduce a more realistic description of nucleons as Dirac particles. 

In order to do this in a satisfactory way, it would be necessary to use a more 
general geometry in which a spinor field would be a natural element, just as the 
paths of space-time are a natural element of the present geometry. 

It would be possible to introduce a spinor field as a non-geometric entity 1/J 
obeying a Dirac-like equation. The "natural" form of such an equation contains 
the Fock-Ivanenko coefficients, with terms proportional to the connection: 8) 

(10) 

with 

Thus in addition to the terms which occur with a Riemannian background there 

will be a term proportional to rp¢,AJ, arising from C~"' in the Dirac equation, 
representing a derivative coupling. But it is possible, though artificial, to add extra 

terms to (10) "by hand" to cancel out this term involving ¢,# and replace it 
with one proportional to r 5¢1/J, which would be in better accord with the properties 
.of the actual nuclear interactions. 

§ 3. Numerical values 

The parameter m is independent of the other constants in the model, and we 
may choose it to be the inverse of the pion's reduced Compton wavelength. A 
may be chosen to fit astrophysical data. 9l 

¢ is proportional to the actual value of the pseudoscalar field (j) which one 
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usually considers in particle physics, and we vvrite ¢ = kr]J. In order for ( 4) to 
give the correct classical equations of motion for nucleons of mass lo,J, coupled 
to the (]) field with hadronic charge g. we must have k=gj},fc2 • To obtain the 
correct contribution of the r]J field's energy-momentum tensor to the Einstein equa
tions, we must have, from (8), (9/4)k'=8rcG/c1 • If 1ve put /3=g'/hc, we see 
that these tT,vo conditions on k imply 

r. I Jt7: 
Af/v /]cc~.j G , (11) 

to within a factor of order unity. vVitb i3=1, JJ must be on the order of the 
Planck mass, 2.2 X 10- 5g. This is far from being true for actual nucleons. To say 
this in another way, since (11) is equi\·alent to g'=Gl\12, the scalar field inter
action of the nucleons has the same strength as gravity. (The fact that black 
holes vdth the Planck mass are "strongly intemcting particles" has been noted 
by Treder. 101 ) 

Thus ·while our equations have the correct form, the numerical values seem 
quite wrong. This is not surprising, for both the gravitational and nuclear inter
action arises here from different parts of the same object r;", and will thus hcwe 
the same strength. Similar difficulties can occur in non-symmetric theories, in 
which gravity and electromagnetism are represented by the symmetric and ske\v
symmetric parts of a second rank tensor. 

This result should not be too discouraging, for it refers only to the bare mass 
and coupling constant. Qunnti;cation and renormali:cation must be effected before 
our equations for the strong interaction can be of any value. It is quite possible 
that these procedures, together 1vith the effects of quantum gravity, could make 
tbe interaction of the right order of magnitude. 

It is worth noting that particle masses on the order of the Planck mass also 
occur 111 recent gauge attempts to unify the strong, electromagnetic and weak 
interactions. 11' 
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