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It is shown how the partition functions of dual strings are evaluated in the framework 
of the functional formalism. The functional integrals are made explicit by the use of the 
Kronecker limit formulae, let alone well defined thanks to the zeta·function regularizations. 

§ I. Introduction 

The partitiOn function of a given dual model is an arithmetical tool to specify 
how many states with a definite mass squared of the resonances the dual model 
has, and for instance it readily informs us how the degeneracy increases as the 
energy does.*' It is true that any dual model is not determined solely by the 
partition of the mass spectra, but any dual partition function well features the 
mathematical characteristics of its respective model: We may be thus allowed to 
say that the variety of the partition functions well reflects the variety of the dual 
models. It is therefore always preferable to have a well-established foundation 
for the formulation of dual partition functions. 

Our aim in this paper is to give a consistent way of describing and calculating 
the partition functions of the known dual models in the framework of the so-called 
functional formalism. We share thus our objective in common with those in Refs. 
2) and 3), but it will turn out that our line of calculation still has some value 
of its own. 

In § 2, we review a lemma due to Kac4' on a characteristic of annulus domains, 
which will form a starting background for our way of description. In § 3, we 
begin to deal with the partition function of Veneziano's orbital model. In the 
first subsection it is defined as a functional integral and is converted to be com­
pactly written by the values of the zeta-function along the line of Hawking.5' In 
the second subsection the values are explicitly evaluated by the use of several 
known formulae including Kronecker's first limit formula. The partition function 
of the orbital string proves without overcharge to be a modular form of weight 
- (] /2, where (] denotes the effective dimension of space-time. The divergence 
problem of the "zero-point energies" is also automatically solved. Section 4 is 

*' For details, see for example Ref. 1); any article discusses more or less the physical roles 
of the partition functions. 
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1710 lvf. 1\finami 

concerned with the case where the spinor fields contribute. The presentation 1s 
quite parallel to the one in § 3, but this time the Kronecker second limit formula 
proves to be most relevant. Some additional remarks are contained in § 5. Proofs 
of some important formulae are collected in the Appendices. 

§ 2. A characterization of one-loop domains 

Kac once delivered an amusing lecture entitled "Can One Hear the Shape of 
a Drum?," 11 in which he exibited an interesting relation between a geometry of planar 
domains and the eigen-frequencies associated with the diffusion equation. Let D 
be a domain in the (s, t) -plane and aD its boundary. We then suppose given a 
function rp (s, t; T), depending also on the time T, which satisfies*1 1) arpjaT 
=(a,2 +a()rp, 2) rp(s,t;O)=y(s,t) for (s,t)ED and 3) rp(s,t;T)=O for (s,t) 
EaD and O<T<co. Then rp(s,t;T) is written as 

rp(s, t; T) = fnds'dt'y(s', t')P(s, t!s', t'; T), (2·1) 

where 
00 

P(s, t[s', t'; T) =I: e-lnTrpn(s, t)rpn(s', t'). (2· 2) 
n=l 

Here {rpn (s, t)} denotes an orthonormal basis for L 2 (D), each of its components 
obeying 

a) 

b) 

(a,2 +a,") 9n (s, t) + An'f!n (s, t) = 0, } 

9n (s, t) = 0 for (s, t) E aD. 
(2·3) 

To see that (2 ·1) satisfies 1), 2) and 3), it only suffices to try to expand 

= 
Y (s, t) =I:; Cn'f!n (s, t). (2· 4) 

n=l 

The kernel P(s, t[s', t'; T), subjected also to the diffusion equation, behaves like 
o(s-s')o(t-t') when T----'70+, and vanishes for (s', t') EaD, which thus indicates 
that the "stuff" is concentrated on (s, t) at T=O, while it becomes destroyed as 
it reaches the boundary. For T extremely small, the stuff must feel the boundary 
situate at an infinite distance; hence the approximation for T ----'70+: 

, , 1 [ (s-s') 2 + (t-t') 2J P(s,t[s ,t; T)/'J4nTexp - -- 4T- -. (2·5) 

Let us tentatively write e (t) for the quantity 

(2· 6) 

which is a trace of a sort. Then it follows from (2 · 5) that 

*l We here follow a summary by Hejhal.'l 
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A fJ(T) ~ ---
4nT 
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(2·7) 

for T ~o+. Here il denotes the area of D.*) According to Kac,<) fJ (T) more 

finely expands as 

00 

Q (T) ~I; BnT"12 (2· 7') 
n=-2 

with 

B __ 2 = r1/ 4;r, B_ 1 = L/8v7i, Bo = (1- h) /6, (2·8) 

Here L stands for the length of f) D and h the number of holes in D, · · ·. Hence 

we may say that if we think of D as a drum, we can hear and tell first the 

area of the drum, and then its boundary's length, and thirdly its connecti,-ity, ··· 
as time grows. This idea was largely generalized and proved by McKean and 

Singer.n The coefficient B0 is related to the Euler characteristic and the like in 

cases of more generalized manifolds and sometimes is called the index. 
It should further be recalled that the Mellin transformation of the theta-series 

fJ (T) gives rise to a sort of zeta-june tion: 

(2·9) 

which is originally defined for Re l?> 1, but is analytically continued all over the 
complex lc-plane except at !? = 1. To see that (2 · 9) has really a simple pole at 

k = 1 with residue A/ 4;-r, it will be judicious to apply (2 · 7) to (2 · 9) and refer 
to the fact that T + k- 2 has simple poles at k = 1, 0, -1, -2, · ·· (the poles except 
at k = 1 then being cancelled by those of r (lz)). This consideration suggests 

in turn that the first constant term of the Taylor expansion of (2 · 9) around k = 0 
is determined by the B 0 term of (2 · 7'). In fact, if B 0 = 0, then the zeta-function 
(2 · 9) vanishes at k = 0. It may thus be said that the geometrical information 

embodied in (2 · 7') is equivalently contained in the values of the zeta-function. 
In any case, this field of arithmetical functions is one well established ever since 

the last century and there is a pile of useful formulae, whose blind applications 
must sometimes help us to save time in our calculation. 

The dual partition functions of mass spectra are constructed as functional 
integrals on an annulus domain. Our interest rests on the fact that we do not 

hear the constant term of fJ (T), or the index B 0 vanishes, in the cases of domains 
with one hole. That is, we want to show how this fact really allows us to evade 

the difficulty around the problem of the infinite dimensional Jacobian which other­
wise bothers us. 

*l Since small T is large An, Eq. (2·7) alternatively says that the number of l,n between O<Xn 
<x grows like (A/4r.)x as x-7oo (Weyl, 1912-see Ref. 6)). 
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§ 3. Dual partition function associated with the Veneziano model 

3.1. Functional-integral representation 

If we tentatively write H for the Hamiltonian of the dual model, the partition 
function is roughly given by Tre-PH, where (3 is the (rotated) proper time. The 
dual Hamiltonian is a double integral of the density over, for example, a rectangular 
domain in the (s, t) -plane. Hence the trace Tr in this case implies a sewing-up 
of a pair of the opposite sides of the domain. An annulus thus appears on the 
stage. 

Let us define the domain C by 

C= { (s, t) IO<s<l} /'"'"', (3·1) 

where '"'"' represents the equivalence relation defined by (s, t) /'-./ (s, 2(3 + t). Let 
us denote by y<il (s, t), i = 1, 2, ... , (], the transverse dynamical variables subjected to 

ym (s, t) =0 for (s, t) E8C. (3·2) 

Then the partition function of the orbital string reads 

(3·3) 

where (8y) 2 = 2.:~= 1 (8yw) 2, and f IJ)By (s, t) ·· · implies the functional integration over 
all y (s, t) satisfying (3 · 2). As a parameter of the partition function, we make 
constant use of r defined by 

r=i(3jl. (3·4) 

In the light of (3 · 2), we can choose the following as the orthonormal basis 
corresponding to {\On} satisfying (2 · 3): 

\0. (s, t) = v1j(3l sin)) (-rr/l) t' ' 

\O~v(s, t) = V2j(3l cos f.J.(-rr/{3)s·sin V(njl)t, l (fl., V=1, 2, ... ) 

\O~t< (s, t) = V2j(3l sin fl. (-rr/(3) S· sin)) (njl) t, 

with eigenvalues 

l...= (v/l)2·-rr2 

;,I',= [ (f.l./!3) 2 + (v jl) 2] . -rr2 

for (jJ.(s, t), } 

for <)?~. (s, t). 

Then, corresponding to (2 · 4), we have the expansion 

00 

y (s, t) = 2.: a,cp, (s, t) 
Jl=l 

00 00 

+ 2.: 2.: [a~,(jJ~. (s, t) + a!,lf?!v (s, t)], 
ft=l P=l 

where the coefficients (a., a~., a!,) are iJ-vectors. 

(3·5) 

(3·6) 

(3·7) 
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Let us regard (3 · 7) as usual as defining the variable transformation from 
y(s, t) for (s, t) EC to (av, a~"' a~v) for JL, v=1, 2, ···. Its Jacobian is necessarily 
indefinite. We therefore scale y (s, t) to jy (s, t) with some constant j and assume 
we can fix j in such a way that the measure remains the same if the Jacobian 
from y (s, t) to (jav, ja~"' ja:v) is unity (this is always possible whenever the dimen­
sion 1s finite). This then allows us to write the r.h.s. of (3 · 3) as 

Av(r) = S Il jdeav"fLPd'a~vd'a;,, 
X exp {-~ lc,(a,) 2 - ~},",[(a~,) 2+ (a:,) 2]} 

4n 4n 

=IT p ( 4n2) s;z iJ: P' ( 4nz) s IT A, -o/2 IT lc;~ . 
JJ=l p., .V=l V=l p, V=l 

(3 ·8) 

The last line clearly suggests that we should define the zeta-function as follows: 

(3·9) 

corresponding to (2 · 9). In fact, then, the r.h.s. of (3 · 8), as exemplified in Hawk­
ing's article,5J takes the following compact form: 

(3 ·10) 

One of the cruxes in the previous expression (3 · 8) was that infinite products of 
2nj appeared in it. For the reasons set out in § 2, however, Za (k) is expected 
to vanish at 1<=0 in the present case so that Av(r) may simply prove to be 

Av(r) =exp[o· Za' (0)]. (3 ·10') 

As is widely known, this expression, if straightforwardly calculated, still suffers 
from a divergent factor due to the presence of the "zero-point energies". The 
value of our method in what follows also lies in an automatic resolution of this 
trouble. 

It is easily inspected that Av(r) does not respect by construction the invariance 
under the interchange of land (3 (or r---+-1/r); but it will be proved that Av(r) 
1s a modular form on SL (2, Z) with respect to r. 

3.2. Evaluation 

The first term of Za (k) of (3 · 9) is a standard Riemann zeta-function and 
the second belongs to Epstein's zeta-function.8J As a typical case of the Epstein 
zeta-function the following Dirichlet series is often used8J~loJ 

E(r k) = L:; J!~r2_"_ 
' Ctt,vJ"e(O,O) [vr + JL[ 2k 

(3 ·11) 

111 which (JL, v) runs over the lattice which consists of all pairs of integers except 
for (0, 0). Hence Za (k) is alternatively written as 
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(3 ·12) 

One can find one integral representation for E ( r, k) in Ref. 8) and another in 
Ref. 11), from which one may readily obtain the values of Za (k). However the 
values we need are only at a few points so that we can proceed differently. 

As is recapturated in Lang [Ref. 10), Chap. 20, § 4], E (r, k) has a simple 
pole at k=1 and satisfies 

~i_r:;(k-1)E(r, k) =n, j' 
d . 

lim-(k-1)E(r, k) = -n logJrl +2n(r- log 2) -4n logJ'IJ(r) I, 
k~l dk 

where r is the Euler constant and '17 (r) the Dedekind eta-function 
00 

'17 (r) = e"i<l12 II (1 - e2vni<). 

V=l 

(3 ·13) 

(3 ·14) 

The first of (3 ·13) has essentially the same content as (2 · 7), and the second 
formula of (3 ·13) is the one called the Kronecker first limit formula. 

The material in Ref. 10) is well sufficient to show that E(r, k) obeys th~ 
following functional equation: 

(3·15) 

This and the first formula of (3 ·13) suffice to prove explicitly 

(3 ·16) 

In fact, it follows first from (3 ·15) that 

E(r, O) =lim n-kr (1 +k) E(r, k) 
k-o 

=rr-'T(1)1imkE(r, 1-k), (3 ·17) 
k-o 

which is -1 however due to (3 ·13). On the other hand, we have l;: (0) = -1/2; 
hence the assertion (3 ·16). 

The calculation of Za' (0) is also straightforward: As shown in Appendix 
A, we firstly have 

.!i___E(r,k)i =rr-'-~-(k-1)E(r,k)l -2logrr-2r, 
dk .k~O dk jk~l 

(3 ·18) 

the r.h.s. of which is written as 

-logJri·J'IJ(r) j4 (27r) 2 

due to (3 ·13). On the other hand, we have (' (0) = - (1/2) log 2i7 and ( (0) 
= -1/2. Hence 

Z/ (0) = -I.. log (l(3jn2) + ]._ _!!. E (r, k) .·1 - (

1 (0) - ( (0) ·log ({3/rr) 
4 4 dk k~o 

= -logJ'IJ(r) J. (3·19) 
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Functional Evaluation of the Dual Partition Functions 1715 

Upon inserting this into (3 ·10'), we reach the final result: 

(3. 20) 

The function 'fj (r) is a typical modular form on the modular group generated 

by r->r+1 and r~-1/r,*l and so is Av(r). Since 'f)(r) has a zero at the cusp 

r~i=, .Av(-:) has a pole at r~i=. If this is a pole with multiplicity one, then 

o = 24 (the local variable at r->ico is exp (2rri-:)), and the pole is the tachyon 

pole. 
We close this section by remarking that any constant multiple of the exponent 

in (3 · 3) (for example 1/ 4rr~ 1/ 4rra') is however indifferent to the final result 

(3·20). 

§ 4. Contributions from spinor variables 

4.1. Functional-integral representation 

In place of ycil (s, t), we now take account of two conformal spinor a-fields 

cp1 co (s, t) and 1;2 Cil (s, t) in C along the line of Refs. 13) and 14). The boundary 

condition is given by 

c/h (s, t) cf;, (s, t) = 0 at aC. (4·1) 

Out of the contents of ( 4 ·1), we here take out the case which Virasorow firstly 

chose, that is, the case where 

(/J~=rfh=O 

(/), = ¢2 = 0 

Then we have the expanswns 

at s=l,} 

at s=O. 

rj;1 (s, t) = :E B.1 (t) cos (v- ]._) ;r s , I 
V=l 2 l l 

cj;2 (s, t) = :E B.' (t) sin (v- ]._) !!_s . J 
V=l 2 l 

We next invoke periodic conditions 

(4·2) 

(4·3) 

(4· 4) 

the mmus s1gn corresponding to the even G-parity condition of the Neveu-Schwarz 

model.'l Here m denotes a rational number (usually m = 1). Then we further 

have 

B/ (t) =)~2{3l ~1 [b~1v sin (p- ~) n:[jt + b~2v cos (p- ~) :s-t], 1 
B} (t) = j m2{3l ~Jb~1v sin (P- ~) :[jt + b~'v cos (p- ~) :{3 t], J 

(4·5) 

*l As to the theory of modular groups, there is a nice review by Yui for theoretical physi­
cists.12l 
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1716 M. Minami 

in which b~~ are anti-commuting e-n umbers: 

{b~~' b~,~;} = 0 . (4·6) 

The contribution to the partition function in a functional-integral form is then 
given by 

Ab,m(r) = S f!Y¢1(s, t)f!Y¢2(s, t) ·exp{- ~Sa dsdt(¢1, if12) (~: -~:) (~:)}, 
(4·7) 

where the functional integral should be performed all over the </J1 and </J2 satisfying 
(4·1). 

Let us change the variables as before from {</JJ> </J2 (s, t)} to {b~~} in such a way 
that the Jacobian times IT;.v=1ITud8b~~ becomes identical to ITda (jbb~~) with some 
scaling constant jb· Then the r.h.s. of ( 4 · 7) takes the form 

Ab,m(r) = frr lJ)bdab~~ exp{t :2:: r.p~.M~.r.p".}, 
p,JI 'l.,J p.,ll 

where 

and 

- (fJ.-t) /m{J 0 0 ( 

0 (fJ.-t)/m{J - (v-t)/l 

M =4 
pv (v-1z)/l 0 0 

0 

-(v-t)/l ) 

-(fJ.~t)/m{J · 
0 (v-t)/l (fJ.-t)/m{J 

(4·8) 

(4·9) 

(4·10) 

The integral ( 4 · 8) is a Gaussian-type one on a Grassmann algebra generated by 
b~~' and the way to reach the following result is well known :15>. 16> 

= 
Ab,m (r) = II N8 (det M~v) 812 (4·11) 

p.,v=l 

with 

( 4 ·12) 

As companions of (3 · 6) and (3 · 9), let us formally define 

(4·13) 

and 

= 
Zb.m (k) = :2:: (l~.) -k. (4· 14) 

p,.V=l 

Then the r.h.s. of ( 4 ·11) turns out to be 
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Functional Evaluation of the Dual Partition Functions 1717 

Ab,m(r) = (2jb4/7r')az,,m<olexp[ -o·Z;,m(O)]. (4·15) 

4.2. Evaluation 

Let us define a new Dirichlet senes: 

Then 

Let us further invoke 

E 1121/2Cr, k) = ~ 
(~. v) ~(0, 0) 

(-) "+" (Im r)" 
Jvr + ,uJ2k 

(4 ·16) 

(4 ·17) 

(4 ·18) 

where the sum is taken over all pairs of integers except for (0, 0). Then, as 

shown in Appendix B, Fb (mr, k) is paraphrased as 

T (k) Fb (mr, k) 

= t,n2"- 1T (1- k) E 112 112 (mr, 1-k). (4·19) 

The senes ( 4 · 18) belongs to 

E (r k) = ~ e2,-i(vu+f'v) (Im r)" 
u,v ' Ctt.vJ~co,o) Jvr+,uJ2k 

( 4. 20) 

whose definition may be traced back for example to Ref. 8) and is also found 
in Ref. 10), p. 276. Its marked feature is that it, when u, v are not both integers, 
can be analytically continued to k = 1 and becomes entire. It follows then that the 

r.h.s. of (4·19) is analytic at any neighbourhood of k=O, and so is the l.h.s. On 

the other hand r (k) has a pole at k = 0 so that Fb (rm, k) should vanish at the 

very point. Hence we have proved 

(4· 21) 

The value of the derivative of Zb,m(k) at k=O is also straightforwardly ob­
tainable: Let us multiply both sides of (4·19) by k, differentiate and put them 
to the limit k = 0. Then we readily have 

d i 1 
-Fb (mr, k) I = -El/21/2 (mr, 1). 
dk ;k=o 4n 

(4. 22) 

On the other hand, Kronecker's second limit formula!O) tells us 

00 

El/2 1/2 (mr, 1) =- 4n logle-rrim~/24 II (1 + e<2v-1Jdmr) I. (4· 23) 
V=l 

Equations (4·22) and (4·21) suffice to obtain the value of Z~,m(O), and upon 
inserting this result as well as (4·21) into (4·15), we eventually obtain 
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00 

Ab.m (r) = e-nimro/24 II (1 + e(2v-!)rrimr) '. (4· 24) 
Jl=l 

In terms of Jacobi's theta functions, the r.h.s. of (4·24) for m=1 is written 
as 

(4· 25) 
which clearly shows that Ab, 1 (r) is automorphic under r~-1/r and r~-r+2. 

§ 5. Concluding remarks 

1o The approach we have adopted thus for has a merit of nowhere suffering 
from the divergence trouble when producing the tachyon factor e-"i'8112 in (3 · 20) 
or e-•irB/24 in ( 4 · 24): This is thanks to the functional equation which governs 
E (-r, k) or E 112 112 (-r, k). It is also simply reasoned that the negative mass-squared 
of tachyon arises from an infinite series of "zero-point energies" in response to 
((-1)=1+2+3+ .. ·=-1/12. (See for example Ref. 17).) 

2° The tachyon factors are also known to determine the effective space-time 
dimensions. Let us now consider the partition function of the Neveu-Schwarz 
string: It is given by 

= e-nirB/8 IT (1- e2vnir) -8 (1 + e(2v-!ldr) 6. (5 ·1) 
V=l 

Taking account of 1J (r) = (! 19-2 (0 [-r) 19-3 (0 !-r) 19-4 (0 I -r) Y13 and ( 4 · 24), we also write it as 

(5 ·1') 

the r.h.s. of which clearly informs us that ANs (r) itself is a modular form with 
weight -o/2 on the subgroup r, generated by r~r+2 and r~-1/-r. 18) Because, 
for the case where the group is generated by -r~r+ 2, the local variable at r~i= 
is given by e"i', the first factor in (5 ·1) readily tells us that o should be 8 if 
the pole is a pole with multiplicity one. 

3° In § 4, we inserted a rational number m as a free parameter. Let us here 
try to take out the cases of m = 1/2 and m = 2 in addition to that of 1n = 1. The 
effectiYe dimensions may also be different in respectiye cases. We however assume 
the dimensions for m = 1/2 and m = 2 are identical and denote it by o'. Then 

A r A r _ ( 419-32(012r)19-/(0ir/2) )''18 
b,l/2() b,2()- 19-2(012-r)19-/0ir/2)19-2(0ir/2)19-lOI2r) 

(5·2) 

and the r.h.s. proves to be automorphic under @ ( 4) generated by -r~r + 4 and 
r~ -1/r. Hence so is Av(r) Ab,I (r) Ab, 112 (r) Ab, 2 (r), whose tachyon factor is given 
by 

exp{-irrr( 0 + 01 +~o')}, 
12 24 48 

(5·3) 
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Functional Evaluation of the Dual Partition Functions 1719 

where 01 denotes the effective dimension for the case m = 1. Since the local van­

able at r->ioo in this case is given by ek12, we have the relation 

4/J + 2r)\ +5o' = 24 (5 ·4) 

with the proviso that the multiplicity of the tachyon pole is one. It follows from 

(5. 4) that iJ' = 2, and so the possible configurations of (o, 01) are given by (1, 5)' 

(3, 1) and (2, 3). With the choice of the last case (o=2!), Av(r)Ab, 1 (r)Ab, 112 (r) 
X Ab.2 (r) is nothing but the partition function Aw (r) extensively dealt with in 

Ref. 19). This is a modular form of weight -o/2(= -1) on the group Fx­
which is somewhat larger than G) ( 4). 

4° The partition function of the Ramond string is also interesting and obtain­

able by the same kind of tools used in § 3: Let us here repeat part of the 

arguments. It is the following choice of the implications of the boundary condition 

( 4 ·1) that distinguishes the Ramond model from the Neveu-Schwarz model :w 

(/) 2 = ~;2 = 0 both at s = 0 and s = l 

(cf. ( 4 · 2)). By virtue of this, we have 

ifh (s, t) = ~ D/ (t) cos v 7C s, I 
v~o l l 

</J2 (s,t)=~D/(t)sinv7Cs I 
v~l l 

(5·5) 

(5·6) 

instead of (4·3), while the Dvi(t)'s are subjected to the expansions similar to 

B/ (t) (see ( 4 · 5)). It should be recalled that c/;1 (s, t) has a zeroth mode term, 

and hence we have eventually to define the zeta-function as 

zd(/?) =~(£)'k ~ .. 1 + (lf3) ~ _ lrl~_ 
2 rc ~'~1 (,u-1J)'k rc' t<.v~l lvr+ ,u-1J-I'k' 

(5·7) 

the first series of which is proportional to the Hurwitz zeta-function ( (2k, 1J) [ ( (0, 1J) 
= 0!]. The second series is related to E 112 0 (7:, !?) (a specific case of ( 4 · 20)), 

whose value at !?=1 is given by101 

00 

E!/2 o ( 7:, 1) = - 27C log 2- 4;r log I ei"r/12 II (1 + e2virrr) I. (5 ·8) 
V=l 

The log 2 term is to be cancelled by the term containing (' (0, 1J) = - 1J log 2, 

and we are finally led to 

00 

A a (r) = eirrrS/12 II (1 + e'"'ir) a (5 ·9) 
V=l 

or to 

00 

AR(r) = Av(r) Ad (r) =II (1- e'virrr) -a (1 + e'virrr)a. (5 ·10) 
V=l 

In addition to E11, 112 (r, 1) and E 112 0 (r, 1), we may naturally feel concern for the 
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presence of Eo 112 (r, 1): These really satisfy 

corresponding to Jacobi's aequatio identica satis abstrusa."0J 

5° In case we try to establish a dual-resonance amplitude in the framework 
of the functional approach, we must calculate a functional integral similar to (3 · 3) 
to yield its volume element on the rectangular domain 

{ (s, t) IO<s<l, O<t<t1}. (5 ·12) 

In this case, according to McKean and Singer/) the index B 0 does not vanish but 
is 1/4. Hence the zeta-function is forced to differ from zero at the origin, and 
it becomes needed to differently regularize the infinite dimensional Jabocian. This 
will perhaps be performed by a presence of a counter behaviour of the integrand, 
which is however another matter, not well founded. 
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Appendix A 

We here give a proof of (3 ·18): Let us multiply the functional equation 
(3 ·15) by k-1. Then 

n-kr(k) · (k-1)E(r, k) = -nk- 1T(2-k) ·E(r, 1-k). (A·1) 

Let us differentiate both the sides and put k = 1. Then 

(n-k r (k)) 'lk=l ·n + n-1 (:k (k-1) E (r, k) )'[k=l 

=- (nk-lr (2-k)) '[k=
1
E(r, O) -r (1). (:k E (r, 1- k) )'[k=l (A· 2) 

or 

_!__E(r, k)l -n-1 (_!__Ck-1)E(r, k))[ 
dk k=O dk k=l 

=n(n-kT(k))'lk=l+ (nk- 1T(2-k))'lk=1, 

m which we have applied E(r, 0) = -1, (3·17). 
- 2log n+ 2</J (k)T (k) lk=l where <P (k) =T' (k) /T (k). 
is thus verified. 

(A·3) 

The r.h.s. of (A· 3) is just 
Since </J (1) = - r, Eq. (3 ·18) 
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Appendix B 

We next derive here the functional equation ( 4 ·19) between Fb ("c-, k) and 
E 112 112 (r, k) given by ( 4 ·16) and ( 4 ·18) respectively. By virture of 

we readily have 

= 41 r 12k-1 f.: f.: r= dt t"-le-n-[(,-(lj2))'i<l'+(l•-(lj2))']t, 
f!=lv=l Jo 

where r=if]/l, (3·4). Let us apply to (B·2) 

00 1 = 
2.: e-"(n-(!j2))'at =----~ 2.: (-) ne-nn2;at, 

n~l 2-V at n~-= 

(B·1) 

(B·2) 

(B·3) 

which is for instance derived by the Jacobi transformation -D-.1 (0 I r') = (- ir') - 112 

x-D-,(OI-1/r'). Then 

I! (k) = 21 r 1'"-1 ~ r= dt tk-cs;z) e-"c"-(lf2ll'l"l'' 

+ I r 1'"-'JI~: C-) I' r= dt tk-2e-"~''l' 

+ I, l'k-1 2.:' 2.:' c _)I'+" r= dt tk-2e-c""'l'l"'')-(""'l'l, 
P v Jo (B·4) 

where 2.:' denotes the summation taken for all integers fl. or v=f=O. The first 
integral of (B · 4) is proportional to a Hurwitz zeta-function. The last two in­
tegrals admit both the change of integration variable ty2 --'> 1/ t. Then 

with 

and 

Jo (k): = 2n-u11'T (k- t)f;. (2k-1, t) 

=2nk-1T(1-k) (22k- 1 -1)((2-2k), 

J! (k): = 2.:' (-)' r= dt r"e-"''1<1 2t 
v Jo 

J,(k) :=2.:' 2.:'(-)"+" r= dtt-ke-""'l<i't-rrf''t. 

Now we turn to Eu2 112 (r, k): Application of (B ·1) readily yields 

I,(k):=n-kT(k) lrl-kE11, 11,(r, k) 

= 2 f.: (-)I' r= dt tk-!e-""'' + 2.:' (-)" r= dt tk-le-"''lcl't 
Jl=l Jo v Jo 

(B·5) 

(B ·6) 

(B·7) 

(B·8) 
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+ L:' L:' (-) I'+• r= dt tk-le-n-•'lcl2t-n-l''t. 
11 v Jo (B·9) 

The first term of (B · 9) gives 2r:-'P (k) (21-'k -1) (; (2k) and further an inspection 
tells us that the second is identical to J1 (1- k) and the third to J, (1- k). We 
have thus verified 

(B ·10) 

hence (3·19): 

(B·ll) 

The last expression is quite similar to (3 ·15), but the r.h.s. is not quite the old 
self; this is perhaps related to the fact that the number of the cusps of the fun­
damental region of r~ or its acljoints is not unity. 
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