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We construct radical roots of the elements of the conformal algebra in two dimensions and then 
study the exotic graded algebraic structure satisfied by them. This algebraic structure consists of a 
graded version of the commutator and the anti·commutator and inherits the characteristic feature of 
the super conformal algebra. Thus it suggests a possibility of the extension of the concept of 
supersymmetry. 

§ 1. Introduction 

We shall expose here an exotic algebraic structure VM represented on fields on a 
Riemann surface. VM is a kind of an M -th root structure of the conformal algebra, 
which is the infinite dimensional Lie algebra generated by infinitesimal conformal 
transformations. Such a concept is no doubt mathematically interesting. Besides, it 
seems potentially useful in 2d conformal field theory. I) The special case V2 is, for 
example, the well-known super conformal algebra2

),3) with no central charge. Hence, 
naively we expect that VM generates a generalization of the super conformal symme
try. Indeed, in a concrete lagrangian model one can construct the currents which 
generate the infinitesimal transformations corresponding to the elements of VM and 
the lagrangian is invariant under these infinitesimal transformations.4

) 

However, at present our understanding of the role of the algebra VM is quite 
limited. For example, one main problem in applying it to the conformal field theory 
is that one cannot realize the algebra VM as a current algebra itself. We leave the 
deeper understanding of the algebra VM as a future problem and here we will devote 
ourselves in presenting this unexpected algebraic structure. 

Before giving the definition of VM, we shall explain the key idea of the construc
tion in a much simpler algebraic system as an illustration. . Consider an abelian group 
G. One can canonically construct the M-th root structure of G as follows. Let 1M 
be the unit MxM matrix. We will identify aEG as a-1M , namely, a G-valued MxM 
matrix. Now it is trivial that the element 

b= (1) 
1 

------,-------------------

ai 

is the M-th root of a, where and in what follows the blank in matrices denotes zero. 
By adding the M-th roots of the elements of G and their products, one obtains the M
th root structure of G, which is no longer abelian. What we want to construct is not 
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208 T. Nakanishi 

the M-th root of a group but the one of a Lie algebra. This makes the situation 
rather complicated. Especially, the grading and the graded pI10duct will be 
introduced in ordeL to close the algebra. 

§ 2.'. Radical root structure of the conformal algebra 

Let 3 be the formal differential operator w:ith respect to the variable z. For each 
integer m, consider the operator Lm=zm+13 aeting on the space F(z) of all the formal 
Laurent series of z. The vector space Vi spanned by the basis Lm has the following 
Lie algebraic structure 

[Lm,Dn] = - (m - n)Lm+n (2) 

known as the conformal algebra, or also known as the Witt algebra, or the Virasero 
algebra~withno central charge,'. For our purpose, it-is usefuL to define the more 
generalopt:lrators 

(3) 

for a;;fixed number h. 'These: operators also,satisfy the same Lie algebra, namely, 

[Lm(h), Ln(h)]=-Efn-n)Lm+n(hij. (4) 

Suppose' M,is:a fixediJ:>ositive intege.r and',k=l, "', M.'. Weldefine Dk and Ek(h) 
to b:e,operatorsacting on.the spp,ce ffiMP(ZlIM), the direct sum of MLcopies of F(Zl!M), 

j1 

1 
__ ___________________ L ________________ _ 

3 

3,1 )

i " 

• kJ. 

Mh (5) 

Mh+l} 
k 

Mh+k.-:-1, 
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Radical Root Structure of Conformal Algebra 

Rm(k)(h)=zm+k'MDk+(azm+k'M)Ek(h) , 

where k=I, ... , M. In particular, 
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(6) 

(7) 

For the moment, we do not specify the range in which the suffix m attains value. One 
may consider it, for example, as Z, Q, R, or (I/N)Z for some positive integer N. 
Next let Hk be the operator on EBMF(ZIIM) given by 

---------------------:------------------

H k = 

Ii 

The following formulas are useful, where D=DI. 

i) For k=2, ... , M, DznEk_l(h)=zn( k~ lEk(h) 

EI(h)znEk-I(h)=O. 

ii) For k=I, ... , M, . DznDk-I=znDk+(azn)Hk, 

EI(h)znDk-I=znMhHk. 

(8) 

Mh+k-I H ) 
k-I k, 

(9) 

Let {aI, ... , ak} denote (I/k!)~6a6(l)"··a6(k), namely, the normalized totally symmet
ric product, where the summation is carried over the set of all the permutations of 
{I, ... , k}. Then the fundamental fact is 

Proposition 1 For k=2, ... , M, 

(10) 

proof As the induction hypothesis, we assume that the relation holds for k-l. 
Let m be the sum ~J=Imj, then 

{Ri:i(h), ... , RiJl(h)} = l!j~RiJJ(h)(k-I)!R~k~~~(h). 

Using Eq. (9), 
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Thus, 
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{Ri,}l(h), ... , Ri,}l(h)} = tt{zm+kIMDk+( m-mj+ k-;/ ) k~l zm+kIM-IJj;k(h) 

+(kmj-m)Mhzm+kIM-IHk} 

q.e.d. 

Proposition 1 shows that any element Rm(k)(h) can be expressed in the symmetric 
product of k elements Ri,}l(h) with m=~7=lmi. We call such an expression a decom
position of Rm(k)(h). A decomposition of Rm(k)(h) is not unique.' Notice that, as a 
special case, Ri/:J(h) has its k-th root Rm(l)(h). 

After a straightforward calculation, one obtains another important commutation 
relation. 

(11) 

For a fixed h, let VMk(h) denote the space spanned by the set of basis {Rmk(h)}m 
and let VM(h) denote the direct sum EB~=l VMk(h), where k=l, ... , M gives the grading 
of the space. The above relations are independent h and, as well shall see, essentially 
determine the algebraic structure of VM(h). Hence we will suppress h and will 
simply write Rm(k), VM and so on. It should be remarked that there are no commuta
tors between Rm(k)'S which close in VM except for Eq. (11). 

The next step is to define a graded product { , }: VM X VM-> VM, which is a bilinear 
map satisfying the following property: 

If then 
if k+j~M, 

if k+j>M. (12) 

Suppose that k+ j~M. Let m, n be given numbers and m=~7=lmi, n=~7~i+lmi be 
their arbitrary decompositions. We shall define the bracket product {Rm(k), RnU)} as 

1 ~ R' (k) RU) 
(k + .)! £..J m~([J+···+m~(kl m~(k+lI+···+m~(k+j). 

J . cr: permutation 
(13) 

of {i}7;: 

Then using the decompositions of Rm(k) and RnU), it is not difficult to show that 

{R (k) R U)}=R(k+j) 
m ,n m+n . (14) 

Equation (14) also shows that the definition of the bracket product does not depend on 
the choice of the decompositions m= ~7=lmi, n= ~7~i+lmi. 

As an illustration, we will show an example of k=j=2, m=4=1 +3, n=6=2+4 
and M;;::: 4. In this case, 
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= I! ({R1 (l), R3(I)}{R2(1>, R4(l)} + {R1 (l), R2(1)}{R3(I), R4(1)} 

+ {R1(l), R4(1)}{R
3
(l), R2(l)} + {R3(l>, R2(I)}{R1(1), R4(1)} 

+ {R
3
(l), R4(l)}{R1(l), R2(1)} + {R2(l), R4(1)}{R1(l), R3(l)}) 

=Rf6l. 
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(15) 

Our definition of the bracket product is clearly a generalization of the anticom
mutator. However, at first sight it might look unusual that not only R 4(2), R 6 (2) but 
also other operators R5(2), R3(2) appear in the definition of the product for RP) and 
R6(2). A proper interpretation is that this algebraic operation is defined not through 
Rm(k) itself but through the decomposition of it. This point is indeed a characteristic 
feature of this graded algebraic structure. 

In the case k+ j > M, the situation is more complicated but the same feature will 
appear. The only natural operation one expects is perhaps to rearrange Rm(k) and 
Rn(j) into two elements aE VMM, bE VMk+j - M, and then to take the commutator [a, b]. 
To get a further insight, let us consider the well-known caseM=2, namely, the super 
conformal algebra or the Ramond-Neveu-Schwarz algebra. What we are interested 
in is the case k=l, j=2. Let us adopt the conventional notation Gm=Rm(l), 
L~=Rm(2). Consider the commutator 

(16) 

Then substituting the expression Ln={Gn" Gn.} with n=nl+n2 into the l.h.s. of 
Eq. (16) and using the Z2-graded Jacobi identity 

(17) 

one gets another equivalent expression of the commutator in (16), 

(18) 

Notice that the result does not depend on the choice of the decomposition n= nl + n2. 
One interpretation of Eq. (18) is that one can define a closed operation by taking the 
decomposition of Ln={Gn" Gn2}, joining one part of the decomposition with Gm by the 
bracket product and then taking the comIflutator with the other part of the decomposi
tion. 

Now we return to the general cases. Suggested by the expression in Eq. (18), we 
shall again define the bracket product {Rm(k), Rn(j)} not by Rn(j) itself but by the 
decomposition Rn(j)={R~"{-k), Rh~+j-M)} with n= nl + n2. To make the bracket prod
uct independent of the decomposition of n, it will turn out that the additional 
symmetrization of the decomposition of Rn(j) is necessary. Thus we are led to the 
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following definition of the bracket product, 

1 1 "[{R (k) R(M-k) } R(k+j-M) '] 
k -+)· -M (). -I)' £... m, n,,-<!,+-·-+n"-(M-k) , n"-(M-k+ll+···tn,,-(jl 

, • 0": permutation 
(19) 

of UH 
2=1 

with n= ~{=l ni. The numerical factor is just a convention but this choice will turn 
out to be convenient. In the case k=M, this braket product reduces to the commuta
tor [Rm(k), Rn

U
)] so that it is a graded version of the ordinary commutator. This 

bracket product obeys the very simple expression. 
Proposition 2 

R
(k+j) 
m+n if k+j~M, 

if k+j>M. (20) 

proof We have only to verify the latter case. By definition, each term of the 
l.h.s. is 

(M) (k+j-M) _{ k+j-M M-k j } 
[Rm+n"-,,,+ .. +n"-CM_kl, R n"-(M-k+lI+···+n"-(j)]- - M (m+ ~ nO"(i»+ ~ nO"(i) 

i=l i=M-k+l 

Since for a fixed i, 

j 

~ nO"(i)=(j -1)!~ ni=(j -l)!n, 
0": permutation i=l 

of {ilf.! 

after some straightforward calculations, we get the desired result. q.e.d. 
The proposition shows that the bracket product is independent of the choice of 

the decomposition of Rn(j). As a corollary of Proposition 2, the bracket product has 
the following (anti-)commutativity. In general cases, it gives a non-trivial identities 
of the Rm(k)'S. 

Let aE VM
k

, bE V,J, then 

{ b} {{b, a} 
a, E -{b, a} 

if 
if 

k+j~M , 

k+j>M. (21) 

Here we shall- give some identities satified by the combinations of bracket 
products {{a, b}, e}. Generally, one cannot expect any simple relations from the 
definition of the bracket product except for the trivial cases. However, the results in 
Proposition 2 show that all {{a, b}, e}, {{b, C}, a}, {{e, a}, b} coincide up to the 
coefficient. Thus, there are indeed infinite relations of the following type 

Ul{{a, b}, e}+u2{{b, C}, a}+u3{{e, a}, b}=O. (22) 

Among them, we will point out some special identities which possess the symmetry 
between Ul, U2 and U3. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/82/1/207/1914198 by guest on 13 M

arch 2024



Radical Root Structure of Conformal Algebra 213 

ul{{a, b}, c}+u2{{b, C}, a}+u3{{C, a}, b}=O, (23) 

So far, we do not care about the range of the suffix m. In the case 1I2, we know 
that there are two specific choices of it,Le.; Z (Ramond sector) and Z + kl2 (Neveu
Schwarz sector) for lI2k. These choices are minimal including the original conformal 
abgebra. For VM, there are M different such minimal ranges. Namely, for a fixed 
sE{l/M, 21M, "', 1}, set mEZ +sk for Rm(k). Then VM spanned by these bases is 
closed under the bracket product. 

§ 3. Extension to operators on a Riemann surface 

The operators in VM can be extended to the operators defined on a Riemann 
surface. First, for example, consider the operator Lih)=~a+ h(a~) for an arbitrary 
meromorphic field ~ of weight -Ion a Riemann surface S. Locally, Lih) is 
expressed by a Laurent series '2.amLm(h). Clearly, L~(h) acts on the space of fields 
of weight h. In the same way, we wish to define the operator 

(24) 

The question is on what space R~(k)(h) acts. Let n denote a certain class of fields of 
generally fractional weight h, which are locally expressed as a multi-valued function. 
Suppose ~ be a field of weight - kiM- locally expanded as '2.mE(lIN)ZamZm for some 
positive integer N. Then it is not difficult to see that R~(k)(h) a~ts on a multiple 

(25) 

where jjErh +jIM. Namely, the action of VM(h) can be extended to the oper~tion on 
the space of multiples of fields on a Riemann surface whose weights are h, h+ 11M, "', 
h+(M -l)IM. Thus again it is a natural generalization of the characterization of 
the super conformal transformations. 
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214 T. Nakanishi 

§ 4. Conclusion and discussion 

We constructed radical roots of the elements of the conformal algebra and then 
presented an algebraic structure closed under the bracket product. It inherits some 
of the characteristic features of the super conformal algebra. First, the bracket 
product is a graded version of the commutator and the anti-commutator. Second, the 
action of VM can be extended to the space of multiples of fields with different weights 
on a Riemann surface. So we suspect that they indicate an unknown symmetric 
structure which is a certain generalization of the super conformal symmetry. On the 
other hand, we lack the understanding of the true nature of this algebraic structure, 
especially, its role in quantum field theory. One of the important problems to be 
solved is to incorporate this algebraic structure in the operator method of 2d confor
mal field theory, and 'especially to clarify the quantum-statistical property of the 
currents which generate these infinitesimal transformations. Maybe it will be neces
sary to introduce a totally new type of statistics. Also the search for the geometry 
associated to VM is an important problem to be investigated. Another ciirection of 
development is to apply our construction to affine Kac-Moody algebras. In fact, in an 
analogous way one can construct a radical root of the- affine U(1) algebra, which is 
the simplest case. It is interesting that the operators in this system might play an 
important role in constructing the operator formalism on a Riemann surface with an 
infinite genus following Matsuo's suggestion.5

) 
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