
213 

Progress of Theoretical Physics Vol. 84, No.2, August 1990 

Metastable States of the Fuzzy Spin Mo~el. I 

-- Static Structure--

Tatuo KAWASAKI 

Physics Department, College of Liberal Arts and Sciences, Kyoto University, Kyoto 606 

(Received Aplil 5, 1990) 

A new spin system, in which spins are random in their magnitudes, is proposed to get a further 
.insight into structure and property of the metastable states in random spin systems. Numerical 
analysis is used to examine the metastable states, which are found almost heavily degenerated and 
have fairly stable many·valley structures though the system is inherently unfrustrated. Metastable 
configuration of the spins is considerably ramified and stability of the metastable states is mainly 
attributed to network structure composed of bigger spins in their magnitudes. 

§ 1. Introduction 

The aim of this paper is twofold: Introducing a new random, unfrustrated spin 
modePH) we first engage in clarifying further the role of the metastable states in the 
frustrated systems, like spin glasses. In particular we will concern ourselves with 
toughness of the states against perturbations. At the same time we hope to show that 
the new spin model is appropriate not only for studying the metastable states, but also 
for revealing a new feature of the random system.1)-3) 

The many-valley structure of the energy surface gives us the impression that it is 
unique in the spin glass, the frustrated system. The sructure is formed on the 
existence of a large number of almost degenerated, metastable states in the free 
energy. However the frustration is proved enough but unnecessary for generating 
degenerated states in several articles;l),4)-6) a random but unfrustrated system can also 
have an energy surface with many-valley structures. We therefore wish to concen­
trate here on clarifying the relation between randomness and abundance of metasta­
ble states in the system. Our previous paperslH) give preliminary reports on the 
structure of the metastable states using the new random spin model, the fuzzy spin 
model. In this report discussion on the states will go further, associated with dynami~ 
cal aspects of them. 

In § 2 the random model introduced in this report is discussed in comparison with 
other random models. In §§ 3 and 4 numerical analysis is performed with the aid of 
Monte Carlo Method. Properties at 0 K is discussed in § 3 and toughness of the states 
is examined in § 4. In the last section, § 5, a summary is given and a preliminary 
report on phenomena at finite temperatures is presented, The ordering temperature 
is also determined. 

§ 2. Model 

The new random spin model is defined by the Hamiltonianl) (OJ= ±1), 
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214 T. Kawasaki 

(1) 

where the s/s stand for the Ising spin operators whose magnitudes in principle vary 
site by site and are governed by a characteristic distribution function discussed below. 
Introducing a new scalar random variable t; by the relation that 

(2) 

under the assumption that the spin has a maximum magnitude S, we will rewrite the 
Hamiltonian in the following form: 

(3) 

Relations between models 
The range of the variable t; is then limited between 0 and 1. Property of t; 

determines character of the model since the variable t; governs the variety of spin 
magnitude changing site by site in the Hamiltonian. For example, in a diluted 
magnet the variable t; plays a role of an indicator of site occupancy: t; should be 
assigned to 1 (or 0) for each occupied (or vacant) site. When the variable t; takes ±1, 
the model becomes the Mattis one;8) 

In the concept of bond-randomness, the pair product t;it;j should be replaced by a 
new random variable 7Jij defined by 

(4) 

When the variable 7JiJ takes ± 1 randomly at a given rate, it gives the ±J model, 
widely used in studying spin glasses. When the 7Jij'S are positive (or negative) definite 
and random, the model is then called a random ferro (or antiferro) magnet (FRM).4)-6) 
When 7Jij takes only 0 and 1 at some probabilities, the model corresponds to the 
bond-diluted random magnet. 

Here we will characterize the model by introducing a distribution function of the 
random variable t;, which defines frequency of t;j. Spin magnitude at each site is then 
assigned randomly following the function. The value is not necessarily restricted to 
discrete ones, but can be continuous as is seen in Fig. 1. This is a straightforward 

p(f) p(~) 
F&AF~! 

Ferr~ 
I I 

I I 
I 

o 0 ~ 

Fig. 1. Characteristic distribution function of~. The value ~j at the site j is determined with 
probability defined by this function. For ferro- and antiferro-magnets, the function is the delta­
function at ~=l while for ferrimagnets it is composed of several delta-functions corresponding to 
magnitude of spiris. 
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Metastable States of the Fuzzy Spin Model. I 215 

extension of the random magnets where ~ takes only 0 or 1 randomly. In the 
standard magnets, that is, in ferro· and antiferr~.magnets, the function is something 
like the delta-function, as is seen in Fig. l. 
Model used here 

In the present model discussed here, we will adopt a uniform function between 0 
and 1. We call the present model the Fuzzy Spin Model (FSM)l) in the sense that the 
spin magnitudes can have any values randomly and continuously between 0 and S site 
by site. For simplicity the coupling h 1s hereafter assumed effective only between 
nearest neighbor pairs (fij = J > 0). 

By definition the system is essentially ferromagnetic and should therefore have a 
unique ground state at zero temperature. The transition temperature Tc is given by, 
in the molecular field theory, 

(5) 

since the average value of ~j should be 1/2 from the definition. All sites have 
magnetic spins, however small spin magnitude at each site may be. Therefore all 
sites are necessarily connected/correlated in the present model, resulting in no 
percolation problem in spite of the random nature of the model. It is however noted 
that spin-spin correlation is definitely weaker than that of the standard Ising model 
due to the existence of vanishingly small spins. 

Suppose now that in a chain model there are two spin clusters, adjacent to each 
other, centered with anti parallel big spins respectively and forming mutually antipar­
allel domains. (See Fig. 2.) Probability is in general small at low temperatures for the 
bigger spins to overturn parallel with each other and to coalesce into a single domain. 

. rill t I FUZZY SPIN 

·1111!~+ 

ISING SPIN I 
111 1 1 1 1 

Fig. 2. Antiparallel domains in one-dimensional 
spin system. A typical stable domain struc­
ture is shown where bigger spins are surround­
ed by smaller spins. The bigger spins are 
stable against perturbations from other­
domains while no extra energy is required for 
the Ising spin domains to propagate flipping at 
the domain boundaries. 

The situation is completely different 
from that of the usual Ising model in that 
the fuzzy model needs extra energy in 
forming a single domain from a multiple 
domain stucture even in the one dimen-
sional system. As will be realized in the 
following simulation, this situation will 
be found true even in the two­
dimensional system and be concluded as 
one of the main physical reasons for the 
model to have lots of metastable states 
at low temperatures. 

In the one-dimensional case exact 
analytical expression for the partition 
function can be obtained as is shown in 
the Appendix where internal energy and 
specific heat are also derived.*) It 
shows that the equilibrium properties 
are not different qualitatively from those 

*) Professor O.Nagai kindly suggested the author possibility of deriving analytic expression of the 
partition function and sent him th~- same results shown in the Appendix. 
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216 T. Kawasaki 

of the Ising system. 

§ 3. Realisation of metastable states at OK 

The subsequent simulation is carried out on the two-dimensional square lattice 
with the aid of the usual Glauber's one-spin-flip dynamics. The Exclusive-OR opera­
tion is used to produce the random numbers needed in the simulation. The model is 
set by assigning the random number [0,1] to ~j as the initial spin configuration. The 
machine F ACOM VP-400E was mainly used for computations, with several test runs 
for the same programs by the machine FACOM-782. 
Pattern due to metastable states 

Metastable states are found in various systems when the variation rate is too fast 
for the system to follow the change of its surroundings. From the microscopic point 
of view, smaller spins are apt to turn to the same direction of their nearest bigger 

spins at the initial stage of quenching to 
L = 9 0 H = 0 . \ 0 lower temperatures and to form domains 

centered at the bigger spins. In Fig. 3 
one of the spin patterns (90 x 90) is 

Fig. 3. A final spin pattern (90 x 90) under quench-
ing from the infinite temperature to OK True 
equilibrium configuration is ferromagnetic 
while· the pattern shows vanishing total 
magnetization. The bottom figure shows 
structure of the pattern composed only of big­
ger spins (s~0.75). 

shown with its structural pattern com­
posed only of bigger spins (s::?:0.75S). 
These are obtained, using the Monte 
Carlo Method,' by quenching from the 
infinite temperature to OK. (Hereafter 
an abbreviation '0-TQ' is used for this 
process.) A few hundred steps are found 
enough to get final configurations, in 
which any one-spin-flip from them needs 
extra energy. Black and white dots 
stand for up- and down-spi~s, re­
spectively. Size of each spot, though 
hard to discriminate it, corresponds to 
magnitude of the spin at the site. The 
true equilibrium state should be, as is 
mentioned above, ferromagnetic; the 
spin pattern consists of a single domain .. 
The configuration shown here therefore 
should correspond to that at one of the 
metastable states the system can have. 
The network of bigger spins is clearly 
seen in the bottom figure. In the 0-TQ, 
subsequent new spin configurations are 
selected by the rule that the lower 
energy state is always preferred for a 
considered spin at each step and no 
fluctuations are taken into account. It 
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Metastable States of the Fuzzy Spin Model. I 217 
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Fig. 4. Frequency distribution of the metastable 
energy states in 40 x 40 and 60 x 60 lattices. 
The central peaks locate at about 0.79 x (the 
ground state energy Eo). The curves are 
almost Gaussian. 

0.1 
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Fig. 5. Width of the Gaussian curves versus sam­
ple size L. Linear dependence suggests that 
the width goes to zero with increasing sample 
size L. It means complete degeneracy is 
achieved in the infinite lattice. 

therefore means that the quenching routes induced by different random number 
sequences will generate, at high probabilities, different metastable states. This 
should be one of the main reasons why the present model is rich in highly degenerated 
metastable states when the system is quenched to low temperatures. 
Energy distribution 

Using 10 different initial spin configurations in the lattices of 40 x 40 and 60 x 60, 
frequency distributions of the metastable energy states are plotted in Fig. 4, where 
10000 trials are carried out for each different sample. In these trials the same states 
are scarcely found due to the fuzzy character of the model where none of spins have 
the same magnitude. The peaks locate near at 0.79 x (the true ground state energy 
Eo), which is comparable with the value 0.747 of FRM.4) Other lattices give 0.80 for 
10 x 10, 0.77 for 20 X 20, and 0.79 for 80 x 80 and 100 x 100 in the present simulation. 
The result has a similar nature to that of the frustrated spin glasses in that both 
distribution curves are sharp around their centered values, meaning a large number of 
states lie in a narrow energy region as in the case of spin glasses.9

),10) The curves are 
nearly gaussian with the same peak position 0.79 X Eo within statistical errors. 
Reduction of the energy from Eo is due to small cancellation coming from the 
boundary (surface) of domains where anti parallel spin-pairs are formed mainly with 
smaller spins. As will be shown later in Fig. 7, fraction of the boundary spins is about 
0.3. Width of the curves is plotted versus sample size L in Fig. 5. Linear dependence 
to system size N( = Lx L) shows us that the metastable states will become completely 
degenerated in the limit of the infinite size. In other words, energy differences 
between any two nearest metastable states E1 and E2 will reduce vanishingly small as 
the system size goes to infinity. 
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Fig. 6. Temperature dependence of magnetization 
and spin·glass order parameter defined by 
«S)rlme)System when the sample is quenched to 
each temperature from the infinite one. Only 2 
XI04 MCS (60X60) are used during which the. 
quantity q becomes already steady. Equili· 
brium state is not yet attained while freezing of 
spins is already established (d. Fig. 4 of 
Ref. 2)). 

Or, it means that the bottom of many­
valleys will have the same energy in the 
system free energy surface though the 
barrier heights are not known. Thro­
ugh the quenching processes total 
magnetization of the system is found 
nearly zero even at the final temperature 
OK while the so-called spin-glass order 
parameter defined by q( == < <SZ)rime)System 

grows up to 1/3 (the maximum 
value in the present model) as is seen in 
Fig. 6. 1

)-3) The latter is due to a com­
pletely frozen configuration of spins 
trapped at one of the metastable states 
without fluctuations in energy and 
magnetization at OK. Hence the pres­
ent metastable states will correspond to 
one of the minima of the constraint total 

free energy in magnetization. Behavior of the parameter q suggests existence and 
order of a phase transition temperature of the system when it is gradually cooled. As 
far as the O-field quenching process is used, the results are unchanged in the simulation 
less than 105 MCS in the lattice 60 x 60. The system may be rich in metastable states. 
Longer trials will be discussed at the subsection Relaxation in the next section. 
Shape of clusters 

One more difference from the Ising model is on shapes of clusters. Namely, the 
clusters are, as is seen in Fig. 3, not compact in their shapes, rather ramified like 
clusters at the percolation threshold. To measure complexity of the shapes, we 
counted total number of broken bonds defined as bonds with anti parallel spins at both 
ends. This will give a rough estimation to the total surface length of the clusters; for 
more detailed statistics we should consider surfaces cluster by cluster. The number 
of the broken bonds Nb is then found proportional to the total sites N( = Lx L) fairly 
well as is seen in Fig. 7. Namely, the surface length of the clusters is proportional not 
to linear dimension of the system but to the size N itself. It means that the clusters 
are, not compact, rather ramified in their shapes. The linear dependence also sug­
gests that degree of ramification of clusters is kept constant as the system size goes 
to infinity. This assures the constant peak location in the energy distribution of 
Fig. 4 above. Nearly degenerated metastable states is strongly related with this 
ramification since a simple pattern with compact clusters will yield only a few discrete 
energy states. Fraction of the broken bonds is found 0.31 to the total bonds, which 
should be compared with 0.345 in FRM.4) A completely frustrated system will have 
broken bonds comparable to the system size. 
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Metastable States of the Fuzzy Spin Model. I 219 

Internal fields 
Distribution of internal fields at the metastable states (60 x 60) is plotted in Fig. 8 

where the positive field side only is drawn owing to symmetry. The distribution is 
sharply limited between - zJS and + zJS since the maximum value of the field 
strength is zJS (=4JS here). The curve has a peak at around 2JS, which is estimated 
nicely by the mean field theory as zJ < 5 >( =2J5). Finite height at 0 field is 
characteristic of the degenerated metastable states since the stable ferromagnetic 
state is expected at OK by the definition of the model. Namely, the slow-cooling of 
the system does give the curves inserted, in which numerals attached indicate temper­
atures scaled by Te. To get the latter curves, average is taken over 7 X 104 MCS after 
equilibrium is achieved in the sample 36 x 36. Below Te the curves have no symmetry 
with h=O; The curve at T=0.19 has no counterpart in the negative field side. By the 
way, magnitude of the O-field in the original figure corresponds to fraction of free spins' 
which can flip at no cost of energy. It should, however, be noted that there are no 
spins with zero internal field in a strict sense since none of them are similar and no 
exact cancellation is expected in the fuzzy spin model. Though with this restriction, 

10 
Fig. 7. Number of broken bonds versus sample 

size. Square dependence that the number Nb 
is proportional to area of the clusters means 
they are well ramified as those at the percola­
tion threshold. Their fraction is 0.31 (Nb 

=0.31N) .. 

Fig. 8. Distribution of internal fields. Dis­
tribution curve is drawn on the basis of histo· 
gram (10 divisions in [0,4] f). The spin S is 
set unity. Non·zero height around 0 field 
means degeneracy of energy states due to 
nearly free spins at the metastable states (d. 
Fig. 4 of Ref. 1». The figure inserted indicates 
the field distribution at finite temperatures 
scaled by Te. It clearly shows no height at 0 
field at low temperatures in the equilibrium 
state: The non-zero height is characteristic of 
the existence of the metastable states. 
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220 T. Kawasaki 

the distribution suggests that the metastable states of the model are considered to be 
heavily degenerated in a wider sense since the portion of the nearly-zero field is 
me~mingly large. If we divide the range of fields into 10 equal sections, ratio of the 
area around the zero field to the total is about 12%, which may be related with density 
of the metastable states. I) 

§ 4. Toughness of metastable states 

Status of individual spins at OK 
We have shown in the previous section that the spin configuration at the metasta-

. ble state has a stable structure formed with bigger spins and has no total magnetiza­
tion when the system is quenched to lower temperatures. Stability of the states 
therefore will depend critically on behavior of the bigger spins. We divided spin 
magnitude into three classes and traced them individually after quenching. In Table I, 
we listed fractions of unflipped spins keeping their initial directions after the 
quenching process ended. The data are obtained after averaging over 10000 trials 
starting at one initial configuration (60 X 60). Typical ranges of spins are selected for 
this purpose: Big (0.95 ~ 1.0) stands for spins in the range between 0.955 and 1.05 and 
so forth. It seems reasonable in the standard Ising model that possibility of keeping 

Table 1. Fraction of unflipped spins. Abbrevia­
tions Big, Mid and Sml stand for portions of 
spins belonging to magnitudes ,indicated in 
parentheses respectively. The largest mag­
nitude is scaled to 1. The numeral tabulated 
shows fraction of unflipped spins in each class 
when the O-temperature quenching process ·is 
performed in the lattice 60 x 60. 

Fuzzy Ising 

Big (0. 95~ 1. 0) 0.70 

Mid(0.475~0.525) 0.49 0.50 

SmI(O. O~O. 05) 0.53 

their original directions is fifty-fifty after 
having quenched. Hardness of flipping 
in the bigger spins plays an important 
role in forming the network structure of 
the final spin pattern. This also helps 
the system to persist vanishing magnet­
ization even at low temperatures in that 
the initial random configuration of the 
bigger spins are almost kept in their 
up-down directions. Therefore one of 
the metastable states is once realized at 
OK, it is fairly stable in that bigger spins 
cooperate with each other to keep rigid 

backbone structures. This property is also of the characteristics in the fuzzy spin 
model, which is not seen in the usual Ising model. 
Relaxation 

Existence of metastable states usually affects relaxation processes in an essential 
way: The process is often disturbed and prolonged by being trapped or staying at 
some of the metastable states. In the simulation experiments the metastable states 
are practically defined as the states which have extraodinarily longer relaxation time. 
In Fig. 9 the relaxation behaviors of both the present model and the Ising model are 
compared, where quenching is performed from infinity to 0.90 Tc in both models. 
Without magnetic fields the fuzzy model needs more than 105 MCS to get to its 
equilibrium state while only a few hundreds MCS are enough for the Ising model. 
Even with a magnetic field of 0.1] which is strong enough for the Ising model to get 
a fully magnetized state, the required steps are still comparable with those of no 
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Fig. 9. Behavior of relaxation to true equilibrium states at 0.9Te. The system is quenched from 
infinite to the temperature. The fuzzy model requires more than 105 MCS before being in the 
equilibrium state while several hundreds MCS are enough for the Ising model (the left figures). 
The situation does not change even under the field-cooling process (the right upper figure). In the 
right bottom figure the quenching is performed from the true ground state to the temperature, 
which shows a short ralaxation. 

magnetic field in the fuzzy model. This cannot be attributed only to the difference of 
effective coupling strengths (Ising: Fuzzy=l: 0.25). Some metastable states are not 
so shallow in the fuzzy model that the field 0.1] seems not ,enough for the system to 
overcome energy barriers. 

1. 
~ . Mo 

Fig. 10. Magnetization obtained by the field­
cooling. The quenching is performed from the 
infinite to OK. Fully magnetized state. is 
achieved only under a field comparable to the 
exchange strength J (d. Fig. 6 of Ref. 1». 

Field dependence 
Total magnetization is studied 

through the O-temperature field­
cooling process: The magnetization 
resulted depends strongly on the 
applied field strength due to the 
existence of the metastable states. 
The dependence'is shown in Fig. 10 
where the field-cooling is carried for 
a sample (60 x 60) and 1000 trials are 
averaged to get the figure. The 
fully magnetized state is obtained 
only under a fie'Id strength compar­
able with the coupling constant ]. 
Suppose that there located a pair of 

. big spins which have unfavorable 
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directions in the applied field. Then energy comparable with J is required when one 
of pair spins flips with the aid of the field. It means that some of the energy barriers 
for big spins are as high as the exchange coupling strength]. This also indicates that 
field-induced reconstruction of the once obtained pattern is hard since flipping of the 
bigger spins require higher fields. 
Thermal stiffness 

Annealing the system is one of the powerful procedures to ride over barrier 
heights for spin flipping. We examined the stability of the patterns by the following 
steps: First the system is prepared by the 0-TQ. Then it is annealed at a given 
temperature. The number of unflipped spins after processed is estimated as an 
indicator of toughness of the spin configuration to thermal disturbances. Four 
annealed temperatures are selected; 0.1], 0.3J, 0.5J and 1.1]. Spin patterns are shown 
in Fig. 11, where top maps show ordinary spin configurations and bottom ones their 
skelton patterns which are plotted using only with bigger up-spins (0.755 ~ 1.05). 
Toughness of the metastable states is, at a glance, realized in the stable skelton 
patterns. Even at T=0.5J the skelton pattern after annealing for 2 X 105 MCS still 
resembles considerably well with that at 100 MCS in Fig. 12. Since spins here are 
completely dissimilar with each other, the pattern is not flexible for deforming itself 
and never shift as a whole; this is not true in the Ising model. This situation will 
therefore restrict ralaxation paths to change the states, resulting in helping persisten­
cy of the metastable states. It is surprising that the total magnetization still remains 
about 10% of the equilibrium value even after 2 X 105 MCS and seems steady in time 
though the system reaches, without doubt, the true equilibrium ultimately. Further 
discussion will be presented elsewhere. 

T = 0" 1 T=0.3 T=0.5 T = 1 . 1 

Fig. 11. Annealed pattern after quenched to OK. Patterns of the backbones (patterns of bigger spins) 
are shown at the bottom. Annealing at low tempertures is not sufficient to overcome barriers 
between the metastable states once obtained. The beginning pattern should be referred to Fig. 12. 
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Fig. 12. Comparison between patterns before and after annealing. The map at 100 MCS is used as a 
reference of the original pattern since the map at 0 MCS has many unstable spins to annealing at . 
the beginning. 

To display the microscopic stability of the pattern, persistency of the individual 
spin direction is examined in the fo.llowing scheme; as was in the first paragragh of 
this section, flipping possibility of the spins is estimated for three classes of ·spin 
magnitude and are tabulated in Table II for the lattice (90 x 90). The term 'initial' 
means the virgin state obtained after the O-TQ and not processed further. The values 
tabulated denote ratios of unflipped spins after processed on the basis of the beginning 
(before quenching) configuration. (We counted number of spins only at the end and 
did not care whether the flipped or not during the course of annealing.) The bigger 
spins are found significantly hard to flip once their directions are stabilized by forming 
domains. The ratios become steady above 1 X 105 MCS below the ordering tempera-
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Table II. Fraction of unflipped spins after annealing. Annealing 
the configuration obtained by the O-temperature quenching is 
performed for 2 x 105 MCS in the lattice 90 x 90 at the tempera­
tures indicated in the top line of the Table. Below the order­
ing temperature the bigger spins apt to keep their directions 
for a long time which may assure the original pattern. 

Spin Magnitude initial 0.1J 0.3J 0.5J 1.1J 

Big 0.66 0.63 0.59 0.57 0.50 

Mid 0.48 0.51 0.48 0.47 0.51 

Sml 0.51 0.57 0.52 0.49 0.52 

ture. Some trials show that the equilibrium state is not achieved even after 8 X 105 

MCS. The value 0.50 means flipping possibility is about fifty-fifty_ We have not 
estimated individual spin-spin correlations for these classes of spins to figure out the 
stability of the patterns since they are not directly associated with physical quantities_ 

§ 5. Discussion 

We have shown that the random spin system introduced here is rich in almost 
degenerated metastable states and examined stability of the states from the micro­
scopic point of view_ Randomness in spin magnitude is one of the most essential 
factors for the system to have heavily degenerated metastable states, associating with 
results in other r.andom systems.4

) Hardness in flipping of the bigger spins is found 
to contribute to toughness of the states against disturbances_ Though a variety of 
spin magnitudes prevents the existence of truely free spins that favors degeneracy of 
the states, it does help to make significant barriers among the metastable states. 
Some barriers persist for a fairly long time, compared with that of the standard Ising 
system, below the ordering temperature_ 
Determination of Tc 

Temperature dependence of spontaneous magnetization is plotted in Fig. l3, with 
that of the mean-field theory and the exact one of the Ising modeL The magnetiza­
tion here is calculated as square-root of the magnetic correl!ltion <MM>. To fit the 
curves with each other, determination of the ordering temperature Tc is. cruciaL 
First rough estimation is done by the curve of the spin-glass order parameter in 
Fig. 6. The ordering temperature will lie between 1.0J and 1.05J. Other thermal quan­
tities are also simulated with cooling and annealing by the step of 0.025J from T = 
l.4J toward lower temperatures. At each step the system is annealed for 5 X 105 MCS 
and· first 105 MCS are discarded before thermal averaging. Near the guessed Tc 
(=1.034]), we found however that the annealing time was not necessarily enough to 
get the true equilibrium at some temperature steps. Therefore we found, from the 
present insufficient data, only a tendency that the total magnetization has a constant 
sign .below T = 1.025J for more than 5 X 105 MCS: Above T = 1.050J it changes sign 
several times in the same period. We therefore guess t)1e ordering temperature will 
be between 1.025J and 1.050!-

The ordering temperature is also determined by assuming the critical indices 
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Fig. 13. Spontaneous magnetization. Solid line 
indicates the present result; dashed line shows 
the exact result of the Ising model and dash­
dotted one is from the molecular field theory 
with s=1/2. 

Fig. 14. Critical index /3 versus scaled temperature 
t(=iT- Tci/Tc). Near Tc there needs 
more data to get reliable determination. 

should be the same as those of the Ising model though there are many discussions 
about modifications on the indices of the random systems. ll

)-13) Detailed discussion 
on the index will remain as a future problem. As is shown in Fig. 14, the index /3 
=1.25(Ising) enjoys best fit to the data scaled with Tc=1.034: /3=1.30 for Tc=1.033 
and /3=1.21 for Tc=1.035. Concerning indices above Tc, we cannot say anymore at 
present. The data show more than 106 MCS are required before averaging. 
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Appendix 

First we rewrite the Hamiltonian (1) as follows: 

(A'l) 

where Sj takes only positive values between 0 and S randomly and OJ carries only its 
sign. Then the partition function is calculated as: 

Z= ~ ... ~ e-HlkBT 

. <1,=±l <1N=±l 
(A·2) 

= ~ ... ~ efl:.iSiSi+l<1i<1i+l/kBT 

O'i=±l O'N=±l 
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=2N{I1coshKj+ IIsinhKJ 
j j 

since 

where 

For large N, we will get 

Z=2NI1cosh K. 
j 

'for IJjCJj+1 = + 1, -

forlJ:jlJj+1 = - 1 , 

Therefore the free energy is given by 

F= -kBT<logZ>c, 

(A'3) 

(A-4) 

(A-5) 

(A-6) 

=-NkBTlog2-kBT<~log coshK>c, 
j 

(A·7) 

(A·S) 

where <···>c indicates the configuration average. Using the distribution function of 
spins h(S), the average is defined by 

(A·9) 

Then we will get analytic expessions of internal energy and specific heat: 

0.3 

c SPECIFIC HERT 

1. 2. 3. T / J 4 

Fig. AI. Specific heat in the fuzzy chain model. 

E= - J~<SjSj+! tanhKj>c (A'10) 
j 

-> - NJszl1 dX1l1 dXZXIXzh(Xl,XZ) 

xt h
JxlxzSz 

an kBT 

NJSz e e 
-> kB TZ)o dXl)O dxz 

X Zx z 
x h(Xl,XZ) I / 

hz XIXZ 
cos kET 

(A ·11) 

(A·12) 

(A ·13) 

These expressions are identical with 
those of the standard Ising model when 
we set h(x)=xj=l: The Shottocky-type 
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anomaly is seen in the specific heat, as is shown in Fig. AI. A similar behavior is 
expected for the other distribution function hex) as far as there are no magnetic 
defects. 
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