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A vector space Q is introduced such that the Galilei transformations are considered linear 
mappings in this manifold. The covariant structure of the Galilei Group (Y. Takahashi, 
Fortschr. Phys. 36 (1988), 63, 83) is derived and the tensor analysis is developed. It is 
shown that the Euclidean space is embedded in the (4,1)-de Sitter space through g. This 
is an interesting and useful property, in particular, for the analysis carried out for the Lie 
algebra of the generators of linear transformations in g. 
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The context of Galilean symmetries constitute a natural setting for formulations 
of non-relativistic theories, with particular signficance to the study of the condensed 
matter physics. 1) - 6) Unlike the Poincare group, however, the representations of the 
Galilei group (G) have not been sufficiently developed,5) even though there is a 
wealth of information about non-Lorentzian physics that could benefit greately from 
such studies. 

One characteristic making such a development difficult is the intricate structure 
of G, characterized by eleven parameters: three spatial rotations, three spatial trans­
lations, three boosts, one time translation, and one central extension (necessary to 
find physical representations). The natural representation, nevertheless, is described 
by 10 parameters and specified by 

tv = Rx+vt+a, 
[= t + b. 

(1) 
(2) 

Usually G is introduced without the metrical vector space in which the trans­
formations given by Eqs. (1) and (2) are defined, as is the case for the group 0(3), 
defined on the R3-space or the Poincare group, defined as linear transformations in 
the Minkowski space. This lack of a Galilean metric-vector space has a consequence 
that a ray representation of G is not trivially reducible to a faithful representation. 
Therefore it is interesting, for the study of the Galilei symmetries, to specify the 
manifold underlying the Galilean transformations. The objective of this paper is 
to give the Galilean group also as a linear isometry group, similar to the case, for 
instance, of the Poincare group. 

The elucidation of the tensor structure of the Galilean transformations was un­
dertaken some time ago by one of the present authors. 7), 8) Such a structure is 
based in a five-dimensional formulation of the Galilei transformations, and has been 
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motived by the development of Galilei invariant field theory. For instance, this for­
malism has been used to introduce generalized Schrodinger equations and to derive 
a non-linear Galilei invariant field equation, from which the rearrangement of sym­
metries describing rotons and phonons has been studied. 

Here, developments of that covariant approach to the Galilei group are pre­
sented. In particular, we introduce the tensor formulation, stressing its manifold 
characteristics in order to develop the manifold analysis. In this sense, we construct 
representations of the Galilei Lie algebra on such a manifold (say 9), taking advan­
tage of the (if not intriguing, of least practical) fact that 9 can be considered as an 
embedding of the 3-dimensional Euclidean space (£) in a (4,1) de Sitter space. 9) 

Considering kinematic groups, the Galilei group has been studied previously 
via a Wigner-Inonou contraction of the Poincare group, which is, in turn, contracted 
from the de Sitter group. 10) This, however, is not the case for the approach developed 
here, where the concept of embedding, involving geometrical structures without any 
limiting process, is used. This allows us to establish a direct link between the Galilei 
and de Sitter groups. 

Let us begin by observing that in £, the metric space defined on 1?3, the distance 
between two points is preserved under linear transformations. That is, given two 
vectors x = (xl, x2, x 3) and y = (yl, y2, y3), where x, y E £, then r2 = X2+y2_2x·y 
is invariant under translations and rotations. In a physical system described by 
Galilei symmetries, two types of translations of G occur in £. However, one of these, 
the boost, is defined via an external parameter, the time t (see Eqs. (1) and (2)); 
this is a central aspect of G. 

We can consider, therefore, using the form of the distance r in the Euclidean 
space to embed £ in a lager manifold, say g, such that Eqs. (1) and (2) can be 
considered as linear transformations in g. This can be achieved, indeed, if we observe 
that 

1 x 2 y2 
S2 = __ r2 = -t- - t- + X· Y 

2 2t 2t 
(3) 

is no more than the inner product of two particular vectors of a space g, which is 
defined as follows. Let 9 be a 5-dimensional metric space with an arbitrary vector 
denoted by x = (xl, x2, x 3, x\ x5) = (x, x\ x5). The inner product in 9 is defined by 

(xly) = rJ/-I-vx/-l-yV 
3 

= L xiyi - X4y5 - X5y4, 
i=l 

where x, y E 9 and rJ/-I-V, the metric, is given by 

1 0 0 0 0 
0 1 0 0 0 

(rJ/-I-v) = 0 0 1 0 0 
0 0 0 0 -1 
0 0 0 -1 0 

(Latin indices represent components of vectors in £, as in Eq. (4).) 7),8),11) 

(4) 

(5) 
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Note that 8
2

, defined in Eq. (3), is a particular case of the inner product in Q. 
That this is the case can be seen by writing 

x 2 
5 

X = 2t' (6) 

in Eq. (4). (In order to adjust the physical units of space and time, we can define, 
for instance, X4 = vt, with v = Im/s.) 

Let {e",} = {eI. ... ,e5} be a basis vector of Q, such that x = x"'e", and y = y"'ew 
Then, from Eq. (4) it follows that (e",lev) = f/",v = f/vw In addition, the dual structure 
of Q can be introduced. Consider Q* = {WI. W2, ... } the set of linear forms on Q; 
that is, W : Q 1-4 R, so that (Wi + aW2) x = Wl(X) + aW2(X), a E R, and 

(7) 

where w'" = w(e",). The space Q* is defined by the following set of I-forms. Therefore, 
from Eq. (7), we can write W = w",e"', so that {e"'} is a dual basis of Q. 

The metric f/",v can be used to properly define the operation of raising and 
lowering of indices. In order to do so, first one uses Eq. (4) to introduce a natural 
I-form (also called the 'natural pairing' 12)) defined by x*(y) == (xly). Second, writing 
x = x"'e", and x* = xvev, it follows that x*(y) = x",yVe"'(ev)' This leads to e"'(ev) 
= o"'v' Considering then the definition of x* and the fact that y is an arbitrary vector, 
the operation of lowering indices is established; that is x", = f/",vxv. Introducing 
(f/",v)-l = (f/",v) , the operation of raising indices is defind according to x'" = f/"'v xv ' 
As a result, Eq. (4) can be written as (xly) = x"'Y'" = x",y"', such that 

ei(x) = Xi = Xi, i = 1,2,3, 

e4(x) = X4 = -X5, 

e5 (x) = x5 = -X4' 

The norm of a vector in Q is defined as IIxll = (x)2 +X4X4 +X5X5 = (X)2 - 2X4X5. 
If IIxi > 0 and X4 and x5 are real numbers with the same sign, then x 2 i= O. In 
this case, following the Minkowski space example, x is referred to as a space-like 
vector. Null-like vectors are those with IIxll = 0; that is, (X)2 = 2X4X5. Therefore, 
the condition IIxll 2: 0 is physically acceptable, since the movement of the system is 
in a manifold with the space in both cases given by (X)2 2: O. For vectors satisfying 
IIxll < 0, the physically acceptable situations are those for which X4 and x 5 have the 
same sign, for (X)2 < 2X4X5. 

Any arbitrary vector in £, say A = (Ai, A2, A3), is in correspondence with a 
vector in Q, say A, through the embedding <;$ : A 1-4 A = (A, d, A 2/2d), where d is 
an arbitrary quantity. Indeed, using Eq. (4), it follows that, in this case, 

(AlA) = f/",vA'" AV, 
3 

= L AiAi - 2A4A5 = O. 
i=l 

That is, according to <;$, each vector in £ is in homomorphic correspondence with 
null-like vectors in Q. 
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9 can still be mapped into a (4, I)-de Sitter space (S) 9) by the following linear 
transformation U: 11) 

This results in 

U: Xi 1--* ~i = Xi, i = 1,2,3, 

U : X4 1--* e = (x4 + x5 )/V2, 
U : x 5 

1--* e = (x4 
- x 5 )/V2. 

(8) 

(9) 

(10) 

(11) 

with the (diagonal) metric tensor (g I1-v) specified by diag (gILl' ) ( +, +, +, -, + ) 
(general vectors in S are denoted by Greek letters as ~, (, <; and so on). In short, we 
can gather the above results in the following. 

Proposition: Using the 9 manifold, £ can be embedded into S, a de Sitter 
space, through the composite mapping U o'2J : £ 1--* S, where the transformation U is 
given by 

1 0 0 0 0 
0 1 0 0 0 
0 0 1 0 0 

U = (U~) = 
0 0 0 

1 1 (12) 

v'2 v'2 
0 0 

1 -1 
0 

v'2 v'2 
such that the mapping U : xl1- 1--* ~11- , ~11- E S, x lL E g, is given by 

(13) 

with U = U- 1
• So, in general, an embedded vector A in S (from the vector A in £) 

is given by 

The transformation matrix U can be used to relate the metric 9 of S to '" of g. 
In fact, according to Eq. (11) W() = gl1-v~I1-(V; so we obtain from Eq. (13), 

(14) 

Then using Eq. (4), we have 
(15) 

or its inverse, 9 = U ",U. 
It is worth observing that we can define another, more restricted, embedding in 
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g space by ~' : A I--t A = (A, e, 0). Here e is an arbitrary quantity. In this case, 
on the other hand, A is no longer a null-like vector for (AlA) = A2. In S space such 
a vector is written as A = (A, e/2, e/2). 

Simple examples of the two kinds of embedded vectors in g are provided by 

p= (P,m,E), 

x = (x, t, 0), 

(16) 

(17) 

where, in the former, E = p 2 /2m is the energy and d = m, while in the latter e = t. 
Now we will explore linear transformations in the space g. Let 

(18) 

be a homogeneous linear transformation such that the metric tensor 17JJ.Y and the 
inner product, Eq. (4), are invariant. Then 

G17GT = 17, (19) 

where GT is the transposed matrix of G. 
Consider infinitesimal transformations of the connected part of G, i.e., with 

GJJ.y = 8JJ.y + fJJ.y , with IGI = 1. Using Eq. (19) we obtain 

From the analysis of Eq. (20), the matrix (fJJ.J can be written as 

0 fl 
2 

fl 
3 

fl 
4 

fl 
5 

-f1 
2 0 f2 

3 
f2 

4 
f2 

5 

(fJJ.J = -f1 
3 -f2 

3 0 f3 
4 

f3 
5 (21) 

fl 
5 

f2 
5 

f3 
5 

f4 
4 0 

fl 
4 

f2 
4 

f3 
4 0 -f4 

4 

Defining 

the matrix (fJJ.J, Eq. (21), can be written as 

3 3 3 

(fJJ.J = :LmiLi+ :LniBi+ :LUiCi+uD, (22) 
i=l i=l i=l 
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o 0 0 0 0 
o 0 100 

Ll = 0 -1 0 0 0 
o 0 0 0 0 
o 0 0 0 0 

o 1 0 0 0 
-1 0 0 0 0 

L3 = 0 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 

o 0 000 
00010 

B2 = 0 0 0 0 0 
00000 
o 1 000 

00001 
o 0 0 0 0 

G1 = 0 0 0 0 0 
10000 
00000 

o 0 0 0 0 
00000 

G3 = 0 0 0 0 1 
o 0 1 0 0 
00000 

o 0 1 0 0 
o 0 0 0 0 

-1 0 0 0 0 
o 0 0 0 0 
o 0 0 0 0 

00010 
00000 

Bl = 0 0 0 0 0 
o 000 0 
1 000 0 

o 000 0 
o 0 000 

B3 = 0 0 0 1 0 
o 0 000 
o 0 100 

o 000 0 
o 000 1 

G2 = 0 0 0 0 0 
o 1 000 
o 0 000 

o 0 0 0 0' 
o 0 0 0 0 

D= 0 0 0 0 0 
o 0 0 1 0 
o 0 0 0 -1 

The commutation relations among these generators, L1> ... , D, give raise to the 
following algebraic relations: 

[Lil L j] = EijkLk, [Li' Gj] = EijkGk, [Li' B j] = EijkBk, 

[Bi' Gj] = EijkLk - D8ij , [Bi' D] = Bi , [D, Gi] = Gi. (23) 

In order to study representations of such a Lie algebra, we can take advantage 
of the fact that these generators are connected with those of linear transformations 
in the de Sitter space, S, since the de Sitter coordinates, ~J..I, are connected to those 
of the g-space, X 1.1 , by Eq. (13). Then, a linear transformation in the g-space, 
characterized by GJ..I", = 81.1", + EJ..I", induces a transformation GJ..I" in S specified by 

GJ..I - UJ..I Ga U{3 
'" - a {3 ", 

where S is given by Eq. (12). To proceed further, let us write the algebra given by 
Eq. (23) in a covariant form, i.e., 

[Ma{3, M"}'p] = i('r/apM{3"}' - 'r/a"}'M{3p + 'r/{3"}'Map - 'r/{3pMaJ, (24) 
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with a {3 ... = 1 ... 5 such that , , " , 

iMij = CijkLk, 

iMi4 = M4i = Bi, 

iMiS = MSi = Gi , 

iM4S = MS4 = D. 

Another representation for these operators is 

Ma(3 = -i ( Xa a~(3 - x(3 a~a) . 

333 

Using the transformation U, the de Sitter Lie algebra and its Casimir invariants 
are derived. This implies, if we define M = UMU, with M E S, that we obtain 

[Ma(3, M,p] = i(gapM(3, - ga,M(3p + g(3,Map - g(3pMa,) , (25) 

which has two Casimir invariants, 9) 

and 

with 

Here ca(3,up is the totally antisymmetric tensor in five dimensions. Observe that now 
ME S (not M) is antisymmetric. 

As an example, consider a particular case of rotations plus spatial translations in 
9 of the type xl-' = Gl-'vXV + al-' , with the infinitesimal part of GI-'v being determined 
by Land B, generators of a Lie algebra of the Euclidean group. (We can consider 
full inhomogeneous transformations in g, but these are not of much interest here. 
A more detailed discussion about this point will appear elsewhere). In this case we 
obtain the algebra 

[Li' Lj ] = CijkLk, [Li' FJ] = CijkPk, [Li' B j ] = CijkBk, 

[Bi' P4] = Pi, [Bi' Pj ] = PS8ij . (26) 

Finite transformations are provided by 

where no sum is implied by the repeated indices. Consider a vector in 9 given by 
x = (x, t, x 2 /2t). Then the components of the transformed vector, x, are 

Xi = Ri .xj - V i X4 + ai 

J ' 

X4 = X4 + a4, 

XS = X5 _ vi(Rijxj) + ~V2X4 + as. 

(27) 

(28) 

(29) 
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Equations (27) and (28) are just the Galilei transformations, Eqs. (1) and (2), when 
X4 = t, a4 = b. 

At this point, it is interesting to observe that the natural representation of the 
Galilei Lie algebra is obtained from Eq. (1) and (2) with P5 = O. However, P5 is 
a Casimir invariant (having a constant value in the representation). Then, in this 
covariant context, the usual central extention of the Galilei Group arises naturally, 
without any reference to ray or unfaithful representations. 

Another example of this formalism is described by the Lagrangian 11) 

£ = -~{\7X* . \7X - 05X*04X - 04X*05X 
2m 

+B*(x) (05 + i~) X + (05 + i~) X*B(X)} , 

where B(x) is an auxiliary field. Following Ref. 11), the scalar Schrodinger equation 
is derived. We have 

and 

(05 + i~) X(x) = O. 

Then, X(x) = exp( -imx5/n)'IjJ(x, x4). Since X4 = t, from Eq. (30) we obtain 

n2 

inot'IjJ(x, t) = - 2m \72'IjJ(x, t). 

The energy-momentum tensor is thus 

T~(x) = - O(~~X) o{3X + 128~. 

(30) 

Then, the dynamical variables for space translation, pi, time translation, H, mass, 
M, space rotation, V, and Galilei boost, B i

, are given by 

pi = J d3x dx5T 4 
t' 

H = J d3x dX5T~, 

M = J d3x dX5T~, 

Li = !c. J d3x dx5(x j T 4 - x kT 4.) 2 tJk k J ' 

Bi = J d3Xdx5(tT~ + xiT~), 

with 

T 4 in ( * £:l £:l * ) 
i = 2" X ViX - ViX X , 

n2 

T4 = -\7x*· \7x 
4 2m ' 

T 4 * 
5 = mx X· 
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Using the commutation relation between the fields as given in Ref. 11), it is easy 
to show that the operators pi, H, M, Li and Bi define a representation for the 
algebra given by Eq. (26). 

Finally, we would like to point out that the tensor analysis in Q follows in the 
usual manner. 12) First, consider w = w!-'e!-' and v = v!-,e!-'; w, v E Q*. The tensor 
product of two arbitrary vectors x and y in Q is a bilinear form defined by the 
mapping T = X 0 Y : Q* x Q* f---t n, with 

T(W, v) = X 0 y(w, v) = w(x)v(x). (31) 

In terms of components, Eq. (31) can be written as 

(32) 

and the metric rJ!-'" can be given by rJ!-'" = e!-, 0 ell' This is the case since we consider 
the metric as the mapping rJ!-'" : Q* x Q* f---t n such that rJ!-',,: (w,v) f---t w!-'v", Then, 
it follows from Eq. (32) that 

(33) 

Using Eq. (31), we can show that T!-''' == T(e!-', e") = x!-'y"; as a consequence, T 
= T!-''' rJ!-'". The set {rJ!-'" = e!-, 0 e,,} is a basis spanning the vector space defined by 
the set of 2nd order contravariant tensors; the proof and generalization to higher 
order tensors are straightforward. 

In summary, through an immersion of the Euclidian space in a (4, 1 )-de Sitter 
space, we show how to derive a manifold that leads to a covariant structure of the 
Galilei symmetries. For instance, for the Euclidian space of positions, time can be 
identified as an embedding parameter, or, in other words, the classical space-time, 
n 3 x n, is embedded in (4, I)-de Sitter space. This realizes the natural representation 
of the Galilei group within the defining representation of the de Sitter Group. We 
have studied, therefore, a covariant Galilei Lie algebra and developed the manifold 
analysis. As an example, the structure of the scalar field is considered, resulting 
in the scalar Schrodinger equation. A more detailed discussion of the connection 
established here between the Galilei symmetries and the de Sitter geometric spaces 
is in preparation. 
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